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ABSTRACT

The theory of stimulated light scattering from a binary gas
mixture has been developed. It considers the coupling of a laser
wave and a scattered light wave with the collective modes of the
mixture. It has been found that in a binary gas mixture in which
the different types of molecules have a large difference in mass
and polarizibility, it is possible to generate stimulated scattering
from local fluctuations in the concentration.

The shift in frequency between the laser and backward
scattered wave has been observed systematically as a function of
helium concentration from 0 to 90% in mixtures of He and SF in
which the partial pressure of SF6 was 5 atm., and in mixtures of
He and Xe in which the partial pressure of Xe was 8 atm. In both
cases, for helium concentration less than 60% the frequency shiit
of the backscattered light is characteristic of stimulated Brillouin
scattering in the mixture. As the helium concentration increases
above 60%, the frequency shift decreases and rapidly approaches the
small values which are characteristic of stimulated concentraticn
scattering. The experimental observations are in good agreement

with theoretical predictions.
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CHAPTER 1

INTRODUCTION

A. Spectrun of the Scattered Light

1. Introduction

It is a well known phenomenon that when a beam of light passes
through a transparent medium, some of the light is scattered. This
scattering, specifically excluding Raman scattering, is due to the fact
that the density of the medium is not uniforml. For a macroscopic
system in thermodynamic equilibrium, small amr plitude fluctuations
in the density, and all other thermodynamic parameters which
characterize the system, occur. These zero point or thermal
fluctuations produce a space and time dependent index of refraction in
the medium and thereby cause the scattering of light. The scattered
light has a frequency spectrum which is characteristic of the time
dependence of the fluctuationsz.

The basic theory of light scattering from dense media was
introduced by Einstein3. He recognized the importance of the
coherence between waves scattered by neighboring molecules, and
derived what are essentially the Laue equations for the scattering of
light. These equations show that light is scattered by fluctuations
whose wave vectcr conserves momentum between the incident and
scattered photons.

Einstein did not, however, compute the spectrum of the

scattered light, since the time dependence of the thermal fluctuations
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was not known. The earlicst information on the time dependence was
Debye's theory of specific heat4, which showed that the thermal
content of the medium could be regarded as sound waves.

Following this work, Brili. '-.1in5 calculated the spectrum of
light scattered from these thermally excited sound waves. This
frequency spectrum is determined by energy and momentum
conservation. Momentum conservation requires that the scattering

-

of light with incident wave vector kL through an angle 6 to a final

wave vector l.:S couples only to spatial fiuctuations with wave vector
K = EL--R’S' Energy conservation requires that the frequency of the

scattered light is shifted from the incident frequency by an amount
Ay = kvs where Vg is the sound velocity in the medium. The frequency
spectrum of the scattered light consists of two lines shifted
syrnmetrically about the laser frequency by an amount Ay. The down-
shifted ''Stokes'' line is the result of the creation of a phonon by the
incident photon, while the up-shifted ''anti-Stokes'' line is due to the
absorption of a phonon by the incident photon. The shifted lines may
be viewed as arising from the modulation of the incident light by the
time dependence (eiikvst) of the propagating fluctuations or as a
Doppler shift of the incident light by periodic density fluctuations
moving with velucity Vg in the direction K. The lines are broadened
due to dissipative processes which damp the sound waves .

The first observation of the existence of the Brillouin doublets

was made by E. Gross7. Gross, and subsequent workers, found that

in addition to the Brillouin doublets, the spectrum of the scattered light
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contained a component at the same frequency as the incident light.
This feature was explained by Landau and Placzek8 who pointed out
that the thermal content of the body consists of non-propagating
density fluctuations in addition to the sound waves. These thermal
excitations, which are governed by the heat diffusion equation, lead
to light scattering which is not shifted in frequency but is broadened
by the thermal dissipative processes which damp out these
fluctuations. The resulting central peak in the spectr:'m is known
as the Rayleigh line.

In the binary fluid mixture, fluctuations in the local concentration
of one component also occur. If the two, component molecules have
a different polarizibility, the concentration fluctuation produces a
fluctuation in the index of refraction. Thus the concentration
fluctuations also contribute to the scattered light spectrum. Since
the concentration fluctuations are non-propagating, the central
Rayleigh component in this case will contain the combined effects of
temperature and concentration fluctuations.

In general, the effects of heat conduction and diffusion on the
width of the Rayleigh component cannot be separated in a simple way9
The cross effects between energy transport and diffusion which are
present in a binary fluid result in 2 more complicated structure for
the Rayleigh line. These cross effects are known in nonequilibrium
thermodynamics as the Duiour effect (a concentration gradient
inducing heat flow) and the Soret effect (a temperature gradient

inducing diffusion flux).
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The spectrum of the scattered light thus contains detailed
information on the processes of the transfer of mass,energy, momen-
tu~ temperature gradients etc., over distances which are on the
order of a wavelength of light. However due to the small frequency
shifts and cross sections involved, the use of spontaneous light
scattering to study density fluctuations was limited until 196410’ 1
when the laser, an ideal source for such experiments due to its
intensity, monochromaticity and collimation, was introduced, making

. 2,12
possible accurate measurements of spectra 1 c

B. Light Scattering Formalism

Information about the correlations in the mediurn are obtained
directly from the spontaneous scattering spectrum. Komarov and
Fisher13 have shown, by adapting Van Hove's14 neutron scattering
results to light scattering, that the intensity of the scattered light

is given by

IR, ko) = (=) —2— sines ®u . 1.1)
0 (47R)

The light scattered at the origin is observed at R. The frequency of
the scattered light is Wgy W is the shift in fre‘quency and K is the

change in wave vector of the light upon scattering, and & is the angle
between the electric vector of the incident intensity I, and R S(l_t., w)

is the dynamical structure factor given by

S(K,») = 2Re < 8¢ (K,iw) be(-k) >



where

O¢ (—I.C,iw) = S\dt S‘d3r be (r,t) e'ikr'iwt.
0

The Fourier-Laplace transform of the correlation function of the
dielectric constant can be expressed in terms of similar correlation
functions of any complete set of dynamical variables Qi which

describe the system

<cligio) -k > = 8 & 2& <0 ([ iw) QR >
i 7

The choice of the thermodynamic variables is not important in the
sence that the final result - ‘ill be the same regardless of which
variables are used in the formulation. However, the form of the
etuations and comparison with experimental results is simplified by
a choice of the ''proper'' set of variables. In this work, the state
variables were chosen to be pressure P, temperature T, and
concentration of the lighter molecule c.

The calculation of the correlation functions <Q(i<., i) Q(--l€)>
can be approached from a macroscopic or microscopic point of view,
The macroscopic approach can be applied if the system remains in
thermodynamic equilibrium, This approach, suggested by Landau
and Placzeks, is as follows. The space=-time response of the system
to a deviation from the equilibrium state is calculated using the
linearized hvdrodynamic equations to determine the modes by which
the system returns to equilibrium as well as the relative amplitudes

for each mode. Thermodynamic fluctuation theory provides the initial
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values for the correlation functions.

The resulting ''hydrodynamic'' spectrum is characteristic of
the dominant collective modes of the system and has been described
in the preceding section. This spectrum is related to many of the
thermodynamic derivatives and transport coefficients and thus leads
to a measurement of themi. The hydrodynamic equations are valid
only in the regime in which local thermodynamic equilibrium is
maintained by interparticle collisions. This is the long wavelength,
low frequency limit in which the particle undergoes many collisions
over the characteristic length -112 and time % which the thermodynamic
fluctuations are probed. The conditions which must be satisfied are
] <<11-< and Te <<-1L: where I is the particle mean free path and T. is
the time between collisions. If these conditions are not satisfied, as
in a dilute gas, a more generalized, microscopic approach must be
taken. The basis for this microscopic approach is the Boltzmann
equation with the appropriate boundary conditions. In the low frequency,
long wavelength limit, the macroscopic conservation laws (hydrodynamic
equations) may be obtained from the Boltzmann equation by the Chapman-~
Enskog15 procedure and the transport coefficients are obtained in terms
of molecular parameters.

The macroscopic approach has been discussed in greater detail
in the study of spontaneous scattering from the binary mixture by
Mountain and Deu.tch9 and recent experimental results en a binary

gas mixture by Gornall et. al. e are in excellent agreement with

theoretical calculations.
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The important point is that the thermal fluctuations in the
medium cause scattering of light by modulating the index of
refraction through the various coupling terms %EC-) . The spectrum
of the spontaneous light scattering is shown in Fig. (1.1). The
central Rayleigh peak consists of the cont::ibution from thermal
fluctuations which results in light scattering through the coupling
constant (-g—,*;.) where ¢ is the local dielectric constant of the
medium, and the contribution from concentration fluctuations through
the coupling constant (—g—g— . The shifted Brillouin peaks are due to
the pressure fluctuations with coupling constant (%f—:,).

In addition to the low=~lying excitations of the medium which
give rise to the Rayleigh-Brillouin triplet (thermal and concentration
diffusion and the acoustic phonon mode) there are many other types
of excitations which contribute to the spectrum of the scattered light.
Examples are rotational motions or librations of anisotropic
molecules (inelastic Rayleigh wing scattering) and vibrational
excitations or optical phonon modes (Raman scattering). All of these

effects have been studied with renewed interest and much greater

precision during the past decadelz.

C. Stimulated Light Scattering

If the incident light wave has a very large amplitude and the
coupling between the light and the scattering medium is strong, the
amplitude of the scattered wave will alvo become large. In this
regime it is no longer only the zero point or thermal fluctuations of

the medium which are involved in the scattering process. Instead the



Fig. 1.1 Components of the Spontaneous Light Scattering Spectrum
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scattered wave interferes with the incident wave and produces a
force on the medium through the dependence of the dielectric
constant on the material coordinate. This force drives a coherent
oscillation of the material coordinate. The enhanced motion of Q
then causes enhanced scattering through the dependence of the
dielectric constant on the material coordinate. The enhanced
scattering reacts back even more strongly on the coordinate Q. This
mutual reinforcement of scattering and oscillation of the material
coordinate leads to an exponential growth of the waves proportional
to the square of the coupling constant (%'5)‘ This process is called
"'stimulated'' scattering,

In this picture of stimulated scattering, it is necessary to
describe the amplification and attenuation of the fields through their
mutual coupling. This description requires knowledge of the
relative phases among the waves and thus the problem may most
conveniently be treated by a classical, coupled wave approach.

In principle there are stimulated scattering processes
associated with each spontaneous process”. The first stimulated
light scattering process to be observed was stimulated Raman
scatteringls, and since then many other stimulated processes have
been observed, and studied in great detaill 7+ 19,

The coupled wave appraoch in nonlinear optics was introduced
by Arristrong e_t._al_._zoand has since been used by many authors'’? 1% Cs

to describe various types of stimulated scattering. This is the approach

which will be taken in this work to describe stimulated scattering from
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local fluctuations in concentration in a binary gas mixture.

In the study of stimulated scattering, the important point is to
determine how the electromagnetic fields couple to the medium in
such a way that they can drive coherent fluctuations of the
coordinates Q. Obviously the way to do this is to find the interaction
energy between the medium and the fields in terms of Q. Then,
differentiation with respect to Q gives the ''force'' (i.e. the form of
the coupling term) on the coordinate due to the presence of the
electromagnetic fields. This force acts on the medium in a manner
which reduces the dielectric energy.

In the coupled wave approach, the coupling of the electromagnetic
fields with the medium is given by an interaction Hamiltonian of the

general form22

e

where (-g—é) is the coupling constant, Q is the amplitude of a normal
mode coordinate of the material excitation, and EL and ES are field
amplitudes of the incident and scattered electromagnetic waves. This
form of the interaction energy determines the complete solution of the
problem.

The solution for the scattered wave amplitude is indicated
below. This discussion is presented in order to introduce the
terminology used in treating stimulated scattering processes and to

demonstrate the general structure of the solution. A more physical

interpretation will then be given in order to make clear how the fields
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and the medium interact.

The equation of motion for the material coordinate Q may be
obtained in general from the classical Lagrangian density. The
exact form of the equation of motion depends on the response of the
particular material coordinate Q. However there will always be a

coupling term of the form

8H1nt ~ (_a_ﬁ) E E:::
9Q aQ’ "L 7S (1. 3)

in the equation of motion for the coordinate Q. Thus the dependence
of O on the fields, which is obtained by taking a Fourier transform

and equating all terms at the same frequency, is given by

Q ~ (-g%) E} Es (1. 4)

The dynamical equation for the scattered wave amplitude (Maxwell's
equation) can be obtained rigorously from the Lagrangian density.
However, the same result is obtained by observing that the form of
the interaction energy implies the existence of a nonlinear polarization

of the medium at the Stokes frequency which is given by

NLS 5 -
Plug) = () Q E (1. 5)
With this polarization,direct use can be made of Maxwell's equation to

obtain the behavior of the Stokes wave amplitude. The result is given

by
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L 2

2 ‘0 0 471 9 NLS
VE, - - 4 g - - 4 P
2 2
2 €o ot S C(Z) ot
(1. 6)
41[ -‘k 62 P
3G RaE

where €0 is the linear dielectric constant. If the relaxation times
for the normal modes of the medium are short ccmpared to the laser
pulse duration, a steady state solution for the scattered wave may be

found of the form
_ ~ikgz - iwst
Es(zt) = Es(z) e S .

Substituting this solution into Equation (1.6) and using the dependence
of the coordinate Q on the fields given by Equation (1. 4) gives the

result

3E
S de 2 2
e Ga) [ELl" Eg (1.7)

The Stokes wave thus grows exponentially in space as

2
- _ gIE l z
Eg(z) = Egye L

The stimulated wive builds up from the noise input at the Stokes
frequency ESO' The gain coefficient g depends on the square of the
coupling constant (-giQ) for the coordinate Q, and on the incident laser
intensity lEL|2. The stimulated scattering process depends only on

the existence of a coordinate dependent susceptibility of the medium.
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This approach is applied in Chapter II to determine the gain
coefficients for scattering from the normal modes of the fluid
mixture. One would like to understand now, on a simplified basis,
how the electromagnetic fields interact with the binary gas mixture.
If a static electromagnetic field with some spatial variation in
intensity is applied to the mixture, the density will increase in the
regions of greater field intensity. This behavior is due simply to
the reduction of dielectric potential energy which is achieved by an

increase in the density. The dielectric energy is given by

1

2
W = - > NalE]|

where N is the number of molecules per unit volume and ais the
molecular polarizibility. This result is the well known electro-
strictive effect. In a gas mixture, the dielectric potential energy is
also decreased by an increase in the concentratioz of the more
polarizible molecules in the regions of greater field intensity.

This response of the medium leads to stimulated Brillouin and
concentration scattering when the static field is replaced by the sum
of the incident light wave with frequency wy and scattered wave with
frequency wg. These stimulated processes are very different because,
although the responses of the density and concentration to a static field
are the same, the characteristics of the dynamic response are quite
different.

The time required for the density to change in response to the

influence of the fields is on order of the inverse sound wave frequency
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(NIO-9 sec). The concentration can change in a time on the order of
the diffusion relaxation time which, for the gas mixtures under
investigation, is also about 1077 sec. These response times are

very long compared to the period of the light wave (~ 10-15 sec).

Thus when the incident and scattered wave propagate through the
medium, it responds only to slow variations of the total field intensity.
The slow variation of the total intensity, which is produced by the
interference between the incident and scattered waves, oscillates

with frequency = W Wge Thus this field is referred to as the
difference frequency field.

When the incident an7 scattered waves propagate through the
medium, the density and concentration are modulated by the difference
frequency field for the same reason as in the static case, that is to
reduce the dielectric energy. Thus the slow variation of the total
field drives coherent periodic variations in the density and
concentration which have the same period in space and time, but not
the same phase, as the difference frequency field.

The driven density variation, given by Equation (1.4) with Q
replaced by p, is a sound wave which propagates with the sound
velocity vg through the mmedium. The sound wave modulates the index
of refraction through the coupling term (-g—;) which leads to scattering
with a Doppler shift in frequency given by kv, where k is the wave
vector of the sound wave. The damping of the sound wave causes the
material polarization wave Equation (1. 5) to lag in phase behind the

Stokes wave. The part of the polarization which is out of phase with
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the Stokes field by 7/2 does work on the field. The work done on the
field leads to an increase in energy or gain, in the Stokes wave23.
The result is stimulated Brillouin scattering.

Stimulated concentration scattering is analogous to the situation
described above. The slow variation of the total field drives the
variation in concentration. This variation modulates the index of
refraction through the coupling term (-gf) which causes scattering.
The concentration fluctuations however do not propagate, but instead
relax through diffusion. In this case, it is the diffusive response which
causes the polarization to lag behind the Stokes field. The diffusion
relaxation time is -—1—2 where D is the diffusion constant and k is the
inverse wavelength 13i(the time average field. It is to be expected that
the gain for the Stokes wave will be maximum for a frequency shift of
W= Dkz. This is reasonable, since for w = 0 the polarization is in
phase with the Stokes field so the gain is zero and since the concentration
fluctuation cannot respond to frequencies much larger than Dk2 the
gain is also zero for w > Dkz.

Stimulated light scattering from temperature variations in the
mixture may be described in exactly the same language as the
concentration scattering. In this case the coupling term is (—gﬁ and
the temperature variation is induced by the electrocaloric effect
In analogy with the concentration scattering, the frequency shift of the
scattered wave should be xkz where x is the thermal conductivity of
the medium.

One of the main features of stimulated scattering is that

generally the scattering from only one mode of the system will be
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stimulated. The reason for this is that the first stimulated wave
grows so rapidly that it quickly depletes the laser. In a system with
several modes one would calculate the gain for scattering from each
mode independently. Stimulated scattering would then be observed
from whichever mode presented the largest gain.

In nearly all types of binary fluid mixtures the Brillouin gain
dominates the concentration gain. The object then of calculating the
gain coefficients for the various modes is to determine the dependence
of the gain on the physical parameters so that a mixture can be found
in which it is possible to observe concentration scattering.

In a complicated system, such as the binary gas mixture,
where there may be strong interaction between the various raodes,
one must determine the gain as a function of frequency shift for the
complete coupled system in order to obtain good agreement with
experiment results. The frequency shift of the stimulated wave is given

by the value of the shift at which the gain is largest.

D. Summary

The object of this work was to attempt to observe stimulated
light scattering from concentration fluctuations in the binary gas
mixture. The theory of the response of the binary mixture and the
wey in which it couples to electromagnetic fields was considered in
detail. The purpose of this investigation was to determine the dependence
of the gain coefficient on various physical parameters so that an
appropriate mixture could be chosen to investigate experimentally.

The results of the theoretical study are presented in Chapter II. It
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was found that a mixture of gases at relatively low pressure in which
the two component molecules have a large difference in mass and in
polarizibility is favorable for the observation of concentration
scattering.

The main experimental difficulties were to produce a laser
pulse of sufficiently large intensity that the threshold for stimulated
scattering could be reached (~ 150 M—‘%) and yet maintain a narrow
linewidth (~ . 005 cm-l) so that the :rr:all frequency shift of the
stimulated wave could be observed. The experimental techniques
are discussed in Chapter III.

The frequency shift of the stimulated wave has been observed
as a function of concentration in two gas mixtures He-SF6 and He-Xe.
In order to compare the experimental results with the predictions of
the theory, it was necessary to calculate the gain coefficient as a
function of frequency shift. This calculation required use of a
computer. The gas transport coefficients were calculated from
molecular parameters and the effects of the non ideal behavior of the

gases were included. The results, presented in Chapter IV, show

good agreement between theory and experiment.
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CHAPTER 11

THEORY OF STIMULATED CONCENTRATION SCATTERING

A. Introduction

In this chapter the analysis of stimulated light scattering in a
binary gas mixture is developed following, in general, the analysis
given by Bloembergen g_;_,_gl,l The dynamical equations which
characterize the mixture are presented. The collective modes of
the mixture and their mutual coupling which are described by the
hydrodynamic equations are discussed in detail. The manner in
which the electromagnetic field couples to the gas mixture is
described. Finally, the gains for the various stimulated scattering
processes are calculated and it is shown that gas mixtures at
relatively iow pressures vith a large difference in mass and
polarizibility of the two component molecules are favorable for the

observation of stimulated concentration scattering.

B. Fundamental Equations of Fluid Dynamics

1. Ideal Fluid

The mathematical description of the state of a homogeneous,
moving fluid is determined by means of functions which give the
distribution of the fluid velocity V= :(x, y,2,t) and any of two thermo-
dynamic quantities which characterize the fluid, such as the pressure
P(x,y,z,t) and density p(x,y,z,t). It is well known that all of the
thermodynamic quantities are determined by the values of any two of

them and the equation of state. Thus the state of the fluid is completely
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determined by five quantities; the three components of velocity and
the density and pressure.

All of these quantities are in general functions of the coordinates
X. Y, z and the time t. These coordinates refer to a point fixed in
space and not to the particles in the fluid. The fundamental equations
which describe the fluid behavior arise from simple expressions of
basic conservation laws. These equations are well known2 and will
only be briefly reviewed.

The first of the fundamental equations of hydrodynamics

expresses conservation of matter and is

-g{! ¥ div (pY) = 0 (2. 1)

where p is the fluid density and V the velocity. This result is the
well known equation of continuity. The second fundamental equation
of fluid dynamics is Newton's Second Law applied to a volume element

of the fluid. The result is

~>
L F T -1
9t + (v-grad)v = 0 grad P (2.2)

where P is the pressure. This result is Euler's equation. In deriving
this equation, all processes of energy dissipation which may occur in
a moving fluid due to internal friction (viscosity) in the fluid or heat
exchange between different parts of the fluid are ignored. This
equation then is valid only for an ideal fluid in which viscosity and
thermal conductivity are not important. Since there is no heat

exchange in an ideal fluid, its motion is adiabatic. This result leads
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to the final (adiabatic) equation

ds 55 v - grads = 0 (2.3)
where s is the entropy per unit mass.

A complete set of equations which describe the dynamics of an
ideal fluid then are Euler's equations, the equation of continuity, and
the adiabatic equation. In order to describe the fluid dynamics for
the experimental situation, the effects of viscosity, thermal
conductivity and diffusion must be included. Before proceeding with
this program it is useful to consider an expression for the energy

flux in an ideal fluid. The energy of the fluid per unit volume is

zlpvz+pe (2. 4)

where ¢ is the internal energy per unit mass. Using the equation of

continuity and Euler's equation it can be easily shown that

2 -p
_aa?(.]é_pv +pe) = -div[pv(‘zlvz'l'w)] (2. 5)

where w is the enthalpy per unit mass (w= e+P/p). This equation is

a simple statement of energy conservation.

2. Fluids with Viscosity and Thermal Conductivity

The energy dissipation which occurs during the motion of a
non-ideal fluid is a result of the thermodynamic irreversibility of the
motion. This irreversibility always occurs to some extent and is due

to internal friction (viscosity) and thermal conduction. Euler's
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equation can be written in the form

o,
L pv) = - —ik
at (PYvi) = 5 (2.6)
k
Tix = PO ¥ Pvivy

where Tk is the momentum flux density tensor; i.e. Tox is the ith

component of the momentum density flowing per unit time through a
unit area perpendicular to the X1 axis. This momentum flux
represents a completely reversible transfer of momentum, due simply
to the mechanical transport of fluid particles and to the pressure
forces acting in the fluid. The viscosity is due to another, irreversible
transfer of momentum from points where the velocity is large to

those where it is small. The equation of motion for a viscous fluid
may be obtained by adding to the ''ideal'' momentum flux a term Tk

which gives the irreversible ''viscous'' transfer of momentum in the

fluid.

- o 1
= Pﬁik tpvvi = ol (2.7)

Tik
The fact that internal friction can occur only when there is relative

motion between various parts of the fluid requires that cr‘ik have the

general form

avi avk 2 <'3v2 . avl
ol T ”(Ex_k * ox, 3 8k Ex_l) OO 3%, (ER)

where the constants n, ¢ are the coefficients of shear and bulk viscosity,

respectively, and are functions of pressure and temperature. In most
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cases however the coefficients of viscosity do not change appreciably
in the fluid and may be regarded as constants. The equation of

motion in a viscous fluid then becomes

P[%t!+('\-f" grad)‘\-;] S -gradP+nV2v+(§+13n)graddiv1;
(2.9)

This result is called the Navier-Stokes equation, and it replaces
Euler's equation in a viscous fluid.

In a viscous fluid the equation of conservation of entropy is not
valid since irreversible processes of energy dissipation occur. This
equation must therefore be replaced by a more general result. In the

ideal fluid the law of conservation of energy is given by equation (2. 5)

-a%%p v2+p€) = = div [p:(%vz"'w)] (2.10)

In a viscous fluid, energy conservation still holds, of course: the
change per unit time in the total energy of the fluid in any volume must
still be equal to the total flux of energy through the surface bounding
that volume. However, the energy flux density now has a different
form. In addition to the flux p.‘;(li v2+w) due to the simple transfer
of mass by motion of the fluid, there is a flux due to the process of
internal friction. This flux is given by the vector V-g'. Also if the
temperature of the fluid is not uniform there will be a transfer of
energy by thermal conduction. This process is a direct molecular
transfer of energy from points where the temperature is high to
those where it is low. It does not involve a macroscopic motion, and

occurs even in a fluid at rest.
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The heat flux density :;’ is then related to temperature variations
throughout the fluid. If the temperature variations are small, q
may be expanded as power series in the temperature gradient and

only the first term in the expansion retained.
Q = -Agrad T

The thermal conductivity N\ is in general a function of temperature and
pressure.
The law of energy conservation in a fluid which has viscosity

and thermal conduction is then given by

3 - 2 - a
Bt (%PVZ + pe) = = div [pv(-lz-v +w)=-v" z' -\ grad T] (%.11)

This equation along with the equation of continuity and the Navier-
Stokes equation form a complete set of equations for the viscous,

homogeneous fluid.

3. Binary Fluid Mixture

Up to this point in the discussion, it has been assumed that the
fluid is completely homogeneous. In this work however, the physical
system is a mixture of two gases. To describe this system the
equations of fluid dynamics must be modified.

Consider a mixture of two fluids containing N1 molecules of
mass m, and N2 molecules of mass m, per unit volume. The
chemical potentials of the two species are My and . The differential

free energy may then be expressed as



dF = - sdT - PaV + udN, + u,dN, (2.12)
The mass density is
p = Nym, + Nym,, = N[(1-c") m, + c'm,] (2.13)

where N is the total number of particles per unit volume and c' is

the relative num.ber concentration of the second species, i.e.

N2
1 g <&
c N (2.14)
It is related to the relative mass concentration c by
N,m m
272 1q.-1
c — = c'[e'+(1-c") —=]
N1m1+N2m2 m,
(2.15)
m
_ 2.-1
c¢' = clet(l=-c) -m—]
1
and
fe . gctyl Ty
9c! (ac ) - Fnzc'i-ml(l'c';]z (2.16)
[mlc +(1- c)m?_]Z
g mm,

The distribution of concentration changes in time in two ways.
First, when there is macrgescopéesamotion-uf the fluid, any small
portion of it moves as a whole without changing composition. This
results in a purely mechanical mixing of the fluid. If thermal

conduction and internal friction are ignored, this change in concentration

¥
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is a thermodynamically reversible process and does not result in
energy dissipation. Second, a change in composition can occur by
the molecular transfer of the components from one region in the
fluid to another. This process is diffusion which is irreversible and,
like viscosity and thermal conduction, is one of the sources of
energy dissipation in a fluid mixture.

In a fluid mixture, the equation of countinuity still holds

g{l + div (pVv) = 0 (2.17)

Strictly speaking the concept of velocity must be redefined for a
mixture. As written in Equation (2.17), the velocity is defined as the
total momentum per unit mass of the fluid. The Navier-Stokes
equation (2.9) is also unchanged for a fluid mixture.

It was shown earlier that a complete set of equations for the fluid
dynamics of a single component fluid are the continuity equation, the
Navier-Stokes equation and the energy conservation equation. For
the binary fluid mixture, one additional equation is required. This
equation is obtained frorn the fact that, in addition to conservation oi
total mass, the number (or mass) of molecules of the individual
species must also be conserved. In the absence of diffusion

de
dt

or

0 (2.18)

— + (v grad)c
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Combining with Equation (2.17) gives the result

53? (pc) +div(pcv) = 0 (2.19)

When diffusion occurs, there 1s another contribution to the flux.
Let i be the density of the diffusion flux, i.e. the amount of one
component transported by diffusion through a unit area in unit time.

This leads to the equation of continuity for one component
ac - _ ..
p (32- + v-gradc) = -divi (2.20)

The final equation for a fluid mixture is again the equation of

conservation of energy Equation (2.11)
1 2 . 1 2 -
Eat'(ipv +pe) = -dw[pv(—z-v +w)-v-g'+‘c-ﬂ

It is convenient to put this equation in another form.

Direct evaluation of the left hand side of Equation (2.11) gives

2L 2. . 128  =dv,  dc, 2
3t (ZPV tpe) =3V 'a%*p" at +pat+€5€

Using the equation of continuity for L2} and the Navier-Stokes equation

- ot
for %%’- gives the result
% %pv2+e) = -%vz div(p;’) - p:' grad%v2 -v grad P
oo’
tv, =28 +p 38 - caiv V) (2.21)

k
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For a mixture of two fluids, the internal energy is given by
de = Tds - PdV + pldn.1 + pzdn2

where n , n, are the numbers of particles of the two species per unit
mass of the mixture. The numbers n,, ny satisfy th- relation

n,m, + n,m, = 1. Using the concentration c¢ = n,m, gives

which can also be written as

de = Tds +P/p2 dp +pdc

p p
where p = -nr% = m; is the chemical potential per unit mass of the
2 1

mixture. This relation may be used to calculate %tg and further,

grad P may be obtained from the differential enthalpy per unit mass

dw = Tds + -:-)-dP-l-udc

Also
oo’ ov
Tl—k = div v g" - o".k a—l'
ioox i Xy

After adding and subtracting divq , the result is obtained
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a 1 Z . - 2 - -
-a—t(-z-pv +pe)=-d1v[pv(lz-v +w)-V'g'+q]

(2. 22)
as ' avi . e
+pT (5 +v:grads) - Gik&;+dlvq-deVI

Comparing this result with the equation of energy conservation in

(2.21) gives the result:

ov.
s . S
pT(§-+v~grad s)=°-'ik'8—:i-dw (Q-pi) -igradp (2.23)

This is the general equation of heat transfer for a binary fluid
mixture. The left hand side is simply pT g—:— which is the quantity of
heat gained per unit volume per unit time. The first term on the
right hand side is the energy dissipated into heat by viscosity. The
remaining terms are the heat conducted into the volume concerned.
The complete set of equations of fluid mechanics for a mixture
has now been determined and consists of the equation of continuity
(2.17), and continuity for one component (2.20), the Navier-Stokes
equation (2. 9) and the general heat transfer equation (2.23). These
equations, however, are not determinate until the fluxes T and aare
replaced by expressions in terms of the gradients of concentration and
temperature. If the gradients are small, T and qcan be written in the

form



T=-a grad p - B grad T

(2. 24)
> P
¢ -pi = Ogradp - ygrad T

The symmetry principle for kinetic coefficients requires
5=pT,

[ d
and, if grad p is eliminated from the :xpression for the heat flux, the

result is obtained that

i = -agradp-pBgrad T
q = (p+%—T)T-)\gradT
where
2

is the thermal conductivity.

The chemical potential p may be expanded as a function of P, T, c

= (8 o Sp
grad p (ac)P, T grad c + (aT)c,P grad T + (aP)c, T grad P
The Gibbs free energy per unit mass is given by

do = - sdT + VdP + pdc (2. 25)

from which it can easily be shown that

2
(Q.E) - 99 _ (_S_V)
aP’c, T aPac ac’P, T

The coefficients of diffusion, thermal diffusion and barodiffusion are
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introduced by the following relations

- o o
b p (3C)T,P
D
pkp= = a (%%)c,p +p (2. 26)
_ p 2V B D 2,0
kp = Plgdp, 1 / Golp, 1= " FP&Ep, 1 /P Gp 1

Using these definitions gives the result

) kp
i = 'pD[gradC'f-T gradT+$- grad P]
(2.27)
= o - ap -

The discussion which follows will apply only to fluid mixtures
which satisfy the conditions: 1) The concentration and temperature
vary slowly so that the coefficierts in Equation (é4.27) may be
considered as constant; although they are in general functions of
¢, T. 2) There is no macroscopic motion of the fluid except that which
may be caused by temperature or concentration gradients. The
velocity of this motion is proportional to the gradients so the terms in
(2.20) and (2. 23) which contain the velocity are of second order and
may be ignored. The term - i grad p in (2.23) is also of second
order. In this case the equation of continuity for one component and

the heat transfer equation become
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{1 .o
pat+d1V1 =0

pT -g-§+div (9-p7) = o.

Substituting for T and a. from Equation (2,27) and transforming the

derivative —gf— as follows

s _ (8s, 9T 9s 8 . (8s oP
ot (BT)CP at T (ac)T,P at +(8P)T,c at
_ P oT _am,  bc . s,  8F
T ot '8T'P,c ot 8P'T,c ot
gives the result
oT KT ow  8c, T 85, 8B _ 20 54
¢t cp 9c'P,T 8t  cp '9P'T,c ot X (Eles)
where
| e
Pcp
and
k k
dc _ 2 T P 2
at-D[vc+,1. v2T+P v P] (2.29)

The complete set of equations for a binary fluid mixture have now been
obtained in their final form from the basic laws of conservation of
mass, momentum, energy and mass of one component. These results
are summarized here:

(i) Continuity equation (conservation of mass)
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9B+ div(pv) = 0 (2.17)

(i1) Navier-Stokes equation (conservation of momentum)

_t()—t- + (v: grad)v = -EgradP'l--?VZv
(Zn 9)
+Ld e gradaivy
5 3 n+t) grad div v
(1ii) Thermal diffusion equation (conservation of energy)
0T k ac v2
ot "o ( cP, T at+';(aPTc'zaT‘ w (Bt

(iv) Concentration diffusion equation (conservation of particle

number of individual species)

k k
3 2 T P 2
-éTC = DV c - V2T+ 5 V P] (2. 29)

In this macroscopic thermodynamic approach the transport
coefficients are regarded as constants, to be obtained experimentally,
which describe the properties of a continuous medium. In a micro-
scopic approach, the macroscopic conservation laws are derived from
the Boltzman equation according to the Chapman-Enskog procedure.
The transport coefficients are then obtained in terms of the molecular
parameters. This procedure will be discussed in greater detail in
Chapter IV.

For very dilute gases, the hydrodynamic equations are no longer

valid because the change in the dynamical variables over the mean free
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path length becomes large. The dimensionless constant which is
characteristic of the transition from the hydrodynamic to the kinetic

regime may be written in the form

T
2 o A
y = (81) N — = (2. 30)
k 71’372[
. - N 1 .
where N is the wavelength of periodic variations and I = —5 is
N2 No

the mean free path. For y > 3 the hydrodynamic equations are valid.
The values of the parameter y for the various gases used are given in

Chapter IV.

C. Collective Modes in a Binary Mixture - Their Damping and

Mutual Coupling.

1. Introduction

Before proceeding to include the effects of the electromagnetic
fields into the basic hydrodynamic equations for the binary fluid
mixture, let us examine the collective modes (sound wave, concen-
tration and thermal diffusion) described by these equations and the
coupling between them. Of course the collective modes and all the
effects of coupling may be immediately obtained from the general
dispersion relation, and this is done later in connection with the gain
calculation. However, this dispersion relation is quite complicated
so a better physical understanding of the system may be obtained by

considering the collective modes and their coupling individually.

2., Concentration and Therma! Diffusion Modes and Their Coupling

The concentration diffusion mode is defined by the equation
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- DVc (2. 31)

Q.JlQJ
=|ln

which represents a non-propagating wave with a damping constant
. 2 . . C
I'=iy =Dk™. The thermal diffusion mode is given by an equation

which is identical in form to the concentration equation.

aT 2
a_t = X v T . (2. 32)

This equation again represents a non-propagating mode with damping
constant iw = xk
The coupling between the concentration and thermal diffusion

modes is described by the equations

kg
aT _ )
at " cp ‘ P, T at = xV°T
(2. 33)
8¢ . p[vic+ k—Tva]
ot ¢ T,

Taking the Fourier transform of these equations leads to the dispersion

relation
(i(‘;)2 = (ka + xkz) iw+ ka4 =0
where
k,I.2
2= D+ Ep 1]

The roots of the dispersion equation are
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'r—-

, 2 2 2
iw = -;—(mk + xk7) % 13[(szk + xk5)? - 4xDk*)° (2. 34)

These roots give the damping constants for the coupled concentration
and thermal diffusion modes. Of course, in the limit of kT = 0 when
there is no coupling, these results reduce to the original results for

the uncoupled modes

I
o
et

x k for kT - 0

iw
A simple expression for the effect of the thermal diffusion mode on

the concentration mode can be obtained in the limit of Yy« D. Then

the concentration damping constant is given by

K 2
] 2 T op
iw = Dk 1 + &— 2.35
Tocp ( oc )P, T ( )
kT2 op -2
The term T (=) is of the order of 10 for the gas mixtures
OCP oc
used in this experiment and thus is negligible. In liquids, cp becomes
larger and (—EgC)P T smaller so the additional term is even smaller.
H

The result is that, in this limit, coupling between the thermal and
concentration modes is negligible. In the linear response to an
external field, each mode will exhibit a separate Lorentzian line

shape. This result could also have been easily obtained from the

coupled equations (2. 33) for then, since ¥ is small,

k

ot = c, ot'P, T ot

P
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which, after taking the Fourier transform, leads directly to the
result given in Equation (2. 35).

The effect of the concentration mode on the thermal diffusion
in the limit D < x can be obtained in an analogous fashion. The

thermal damping constant is then given by

2 2
Dk°k

2 T o

o= Xk s Gele, T (2.36)

The additional damping introduced by the coupling is again negligible
due to the small value of kT.

In general, for the gas mixtures used in this experiment, in
the region of concentrations in which the concentration and thermal
diffusion modes are important, the diffusion coefficient and the
thermal diffusion coefficient are approximately equal so the effects of
the coupling must be determined from the complete dispersion

relation Equation (2. 34).

3. The Sound Wave Mode

If the sound wave amplitude is small, the pressure and density

may be written in the form

P = P0+P1

p = pyth,

where P0 and p are the constant equilibrium pressure and density

and Pl and p, are the variations in the sound wave (Pl << PO’ Py < po).
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The equation of continuity (2.17) and the Navier-Stokes equation (2. 9)
may be linearized and combined to give a small amplitude sound

wave equation

2
_Ta 0 vp +l drrov L apl (2.37)
at Po

The set of thermodynamic variables which will be used are P, T, c.

The density variation may be written in terms of these variables as

) S0
Py = (aP)T,cP +( )P c l+(8c)P,T €1
and let 2
E)p = vy = 6, - S
p'T T ap s Yy

where v and v, are the isothermal and adiabatic sound velocities
respectively. The subscript 1 on the non equilibrium part of the

thermodynamic variables will now be dropped. Equation (2. 37)

becomes

2 2 2
) 3" ¢ 3p. 3°T , 1 a’P 1 4
(32) - + (37) + - VP +- 3nt¥)
9c P, T 5 ot Pyc 58 sz at’ Po

(2. 38)
A g2k (9 28c , (9 2 3T
X [v 2V 5 TG JT,PV Bt +(8T)P,cv ot
T

When the concentration and temperature fluctuations are small,

Equation (2. 38) reduces to



=40~

2 2 2
BR vép + 1. ¢ 2P
Jt pO el
where
4
f - -
n —3n+t’

which gives the dispersion relation

2

. (2 'k~ . 2 2

(o) ===y +vok™ =0 . (2. 39)
Po

Y1Po
For long wavelength k « i the dispersion relation is given by

'kl ,ZkZ

e > =t ikvy |[1- 555
Zpo tspovT

which represents the damped propagating sound wave mode
ik Z'(iw+rv)t

P- Poe with velocity =~ VT and viscous damping
constant
2
-k _ @
rv = Zpo (377 + r)

4. Coupling of Sound Wave and Thermal Diffusion Mode

In examining the coupling between the sound wave and the thermal
diffusion mode, the concentration fluctuations and viscous damping
may be ignored. In this case, the equations which describe the

physical system are



2 2
9 o T 1 8P 2
(_2) + — = V P
aT'P, c ot Ve atz

(2. 40)

oT T ,9s oP _
T BT, c 3t - XV'T

Taking a Fourier transform of these equations leads to a secular

determinant of the form

2
2.3p IR
wlGre oz "k
T - 0
. 2 . T
iw = xk iw (%%)T P
P
This dispersion relation can be put in the form
R i3
k™ -k (7+x)+-7=0 (2. 41)
T xv

The solution to this equation can be obtained for two limiting cases.

1) Adiabatic (low frequency or long wavelength)

2 v
v T
R X

In this case, Equation (2. 41) gives

2
~ ko ipx 1 1
k >~ = + 3= (= 5) (2. 42)
S VT VS
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or 2 . 2
k P KN 1 1
-k . o= X (£ - = S
Vs T 2 (cv 1 Zp (cv cp)

which corresponds to the propagation of sound with the adiabatic
velocity and on absorption coefficient TT. This result is correct

2
w<<v /A means that during one period the distance which heat can be

v
transmitted ~ \fi 1s small compared with the wavelength -2
W

2) lIsothermal (high frequency)

2
w > -v—,- k>» <
X X
In this case
v
koo~ - o4g L (vi - vi.) (2. 43)
T 2yv
or
B S kuT ;
v2 c vzp
=T q- v o I -
1-"I’ T2y (1 cp) - 2k (CP c:v)

In this case, the sound is propagated with the isothermal velocity.
The interest in this experiment is with light scattered in the backward
direction from a gas. In this case k = ZkL where kL is the wave
vector of the laser light wave. Putting in numerical values, one finds
that for all liquids, and gases with pressure greater than a few

atmospheres, the adiabatic limit condition is satisfied. Typical

results for some common gases are given in Table (2.1).
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Ky X
Gas L

VT
He 3.811/P
xe . 786/P
SF, .443/P

Table (2.1) - Values of the parameter -151‘ for gases of interest
T

The dispersion relation F.quation (2. 41) for the coupled pressure
and temperature equations is third order in . Two of the roots are
the ones discussed above @ =+ kvS which correspond to sound
waves traveling in opposite directions. The remaining root corresponds
to the thermal diffusion mode including the effects of the sound wave
coupling. For this mode = 0 so the dispersion relation becomes

approximately

o2
Po = xk© o+ el X (2. 44)
vt

.
In the low frequency, long wave length limit

2
v v
w«—XI, k«TT’ wKkvy

This result gives the normal thermal diffusion damping constant

iw = sz +O(0)
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Thus the coupling of the sound wave and the thermal diffusion mode

introduces negligible change in the thermal damping constant.

5. Coupling of Sound Wave and Concentration Diffusion Mode

In the adiabatic regime the coupling between the sound wave

and the concentration diffusion mode is given by the equations

2 2

ap 9 ¢c ., 1 P _ 4
BT, P " * 2 ol vip+ 1 - [ *ﬂvz
s pOs
(2. 44)
ac 2 kP 2
5 - DIVt T,GVP]

For high frequency o >» Dkz, which is valid for the sound wave mode,

the concentration and pressure fluctuations are related by

ac . DP 2p
at PO

The sound wave equation then becomes

Dk

1 P _ 2 1 4 P _ 2 9P
'—z '(';2' - V P+ VZ (3 n + t,)VZ ot ( )T P V ac
Vs pO s

Thus the coupling with the concentration diffusion mode causes

additional damping of the sound wave by an amount

2.2 2,2 ,9p ac!
r Dv _k 20,2 _ Dvgk (a ')P T 3! B
c 2, op oc’P, T 2 *
e (g)p, T p (ac')P,T
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For a dilute gas obeying the ideal gas law, the cheinical potentials

of the individual species have the form
S kBTln (1-c') + t//l(T) 5 By = kBT fnc'+ lPZ(T)

where kg is the Boltzman constant and wl . Wz are functions of

temperature only. Using these relationships, it can be shown that

kBT

OBy

(Gc) = S=olm,crii-oyms;) (2. 45)
and

k (-@g) - N(m -m )C'(I-CY)/

P ‘ac 1" ™2 Y

which gives the result

szk2 N(m, -m )zc'(l-c')
T — S 1 2
c ZpkBT

Thus, for a mixture of two gases, the concentration diffusion
contribution to the sound wave damping becomes largest for a large
difference in the mass of the two component molecules. This
damping occurs for the following reason: diffusion currents of each
species are driven by density gradients, i.e. the density gradients
produce non-zero average particle velocities 71 for each species.
The gradient in the overall pressure in a mixture of disparate masses
produced by the sound wave causes a relative particle flux in the
mixture, that is a non-zero relative velocity 71-72. The relative
velocity is reduced in a dissipative way by intercomponent collisions

and this dissipation contributes to the acoustic attenuation.
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The total sound wave damping coefficient in a viscous thermal

conductive fluid mixture is given by

' =T +I.+I;
2
2 Dv
k* | 4 1l s 8p,2
=2 | 3 N o= o) b — (R
2p 3nted c c op ac’'P, T
0 V. P poladp, T ’
(2. 46)

The effect of the sound wave on the concentration diffusion mode
is obtained in manner analogous to the effect of the sound wave on the
thermal diffusion mode. We consider again small frequencies
w <K kvs. Then theconcentrationand pressure are related by

2
2)p T (—Z:f) - ¥°p

The concentration equation then becomes

K 2
% | bty (P 0y 2l
ot - DIVet g Glp, T 'a"tZ]

which leads to the low frequency limit of the dispersion relation

Dk,
2. 2%p g . 2
tu = DK - 5= f5c) (w) (2.47)

For the gas mixtures under investigation,

2 2 K

2 2P 20, . 1078
Dk Po(ac) 10
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so the dispersion relation reduces to the uncoupled concentration

damping constant.
. 2
iw = Dk +0O(0)

To summarize, we have seen that the basic collective modes
described by the hydrodynamic equations are the sound wave, thermal
diffusion and concentration diffusion. The primary effect of the
coupling between these modes is to increase the damping constants

for each mode.

D. Coupling with the Electromagnetic Field

In the presence of an electromagnetic field, the differential
free energy per unit mass must be augmented by terms due to
variations in the electric field and the dielectric constant and takes

the form

P 2
. 0 . _eE-dE _Ede
dF = - 5,dT + pdc +7p d - SG00" " e (2. 48)

where 850 Mo and PO are the entropy, chemical potential and
pressure respectively when the electric field is absent. Here € must
be regarded as a function of the variables T,c,p. It can be shown
that the force per unit volume on an uncharged dielectric is increased

in the presence of an electric field by an amount

s 2 o¢ E% ¢ E® ac
87 grad [E (ap)T,c] "B (aT)p,c grad T - a7 g)T,p grad c

The last two terms are usually negligible compared to the first term.
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The effect of electrostriction is therefore to add a term

1 g? &
87 [E (ap)T,c]

to the right hand side of the Navier-Stokes equation (2.9). For an
isotropic fluid without macroscopic flow so that the nonlinear

hydrodynamic term (V-grad)v may be ignored, combination of the
linearized equation of continuity (2.17) and Navier-Stokes equation

leads to a small amplitude sound wave equation

N2 p -1

(2.49)

In this equation, p may be expressed in terms of the independent
variables P, T, c by means of the equation of state.

The coupling between the electric field and the thermal and
concentration diffusion modes arises from the change in entropy and
chemical potential when the electric field is added. Integration of

Equation (2. 48) gives the result

2

F(T,p,c,E) = Fy(T,p,c) - %

where F, FO are respectively the values of the free energy with and
without the electric field. The changes in entropy and chemical

potential when the electric field is added are given by



) (B_T)p,c,E

2
s b ED g,
0" 8mp 0T 'p,c
aF EZ

> = (dc)p,T E MO--Q_ﬂ-ﬁ ()c) p, T

The coupling between the entropy (or temperaturc) and the
electric field manifests itself in the electrocaloric effect and is the
coupling term which produces Stokes=shifted stimulated thermal
Rayleigh scatterings. The coupling between the chemical potential
and the electric field drives the concentration diffusion current which
produces the stimulated concentration Rayleigh scattering. In the
presence of an optical absorption constant a an additional term must

be added to the thermal diffusion equation which finally becomes

aT, s, P _|T ( o ot (25 CL
dt cp OP'T,c ot c'P, T 81rpc:p oc'P, T ot

2
T BEZ a conE

xvT'Bwpc ( TP, c Bt T 87pcp

(2.50)

The coupling between the temperature and electric field provided by
the optical absorption produces the anti-Stokes shifted stimulated

thermal Rayleigh scattering(‘. The concentration diffusion equation

becomes



P
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k
% . p| e+ IPT + 2 vPp - —L— @9, o=

]
et 0 o 81rp( )T P

(2. 51)

To these three equations the wave equation for the electromagnetic

field in the isotropic medium must be added

e °E _ 1 8%
VZE'—CE_aF-cf, atzE[( fir P+E8p T+, pcl

(2. 52)

Since the characteristic relaxation times for thermal diffusion,
mass diffusion, and acoustic damping are short compared to the
duration of the laser pulse, solutioas to the set of four simultaneous
second order differential equations may be found in the parametric

linearized approximation, in which the laser field

EL(?’ t) = 'lz E. elKLZ WLt o o

is considered as a constant parameter. The scattered light is
represented as a backscattered wave with amplitude Es, frequency Wy

and wave number kS

- _ 1 ~ikgz-iwgst
Es(r,t) = 2'Ese + cc

The pressure, concentration and temperature variations are assumed

to have solutions of the form
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P(T,0) = §P T, o
oF ,6) = Fo P 4 oc (2. 53)
T(?,t) = % T1 elkz-l“‘t + cc

with k and p satisfying the phase and frequency matching conditions

When these expressions are substituted into equations (2.49) - (2. 52)
and all terms of higher order than linear in the four small amplitudes
are ignored, a secular determinant is obtained which gives = general
dispersion relation. For the special case EL=Es =0, absence of the
electromagnetic field, the relation must reduce to the description of
sound waves in a fluid mixturez. Numerous papers have been devoted

to the description of stimulated thermal and Brillouin scattering of

1., 8¢ 5-9
H ac ¢

The interest in this work is directed toward concentration

light in a single component fluid where ¢ =0

scattering in a nonabsurbing gaseous mixture. Solutions for this case

will be presented in the next section after explicit expressions for the
: i de ¢ 8¢ ;

coupling coefficients 5D e andv 3T have been given.

For a substance which obeys the Clausius~Mosotti relation,

-1 4
ﬁ_—i = -3—17 N[c'al+(1- c')a,]
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where a 1 and a ) are the polarizibilities of the two molecular species,

one readily obtains with the aid of Equations (2.13) - (2.16)

ae 1 )
%(BTD)C T po(apc T pO(ch' T ~ 3(6 1)(e+2)
(2. 54)
2
9€ - (€ oc' _ 41 (e+2) mmaN -
(ac)P,T - (ac')N,T 8c ~ 9 (al a,)

[mlc +(1- c)mz]z

and

1
3

T( - € = I)(e +2)

BT)T c

For a gas with a small optical density one may put -(-5—;'—2-)- =~ 1.
It should be noted that the coupling of the electric field to the
concentration can become comparable to the density coupling only for

a1>>a2.

E. Stimulated Brillouin and Concentration Scattering
1. Introduction

In previous sections, the equations which describe the dynamics
of the binary gas mixture have been developed. We have also seen
how the fluctuations in the thermodynamic parameters which
characterize the system are coupled to the electromagnetic fields, and
have observed that through these coupling mechanisms the electro-
magnetic fields can drive coherent fluctuations in the pressure,
concentration and temperature. The final step in the analysis is to
then discover how the electromagnetic fields interact with these

coherent fluctuations. We have seen that if the gain factor for the
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stimulated wave is sufficiently large the amplitude of this wave will
increase, in the steady state approximation, exponentially with the
distance traveied through the medium. The frequency of the
stimulated scattered wave is the frequency at which the gain is
maximum. The calculation of the scattered wave gain as a function
of frequency is the subject of this section.

Since the collective modes of the binary mixture are strongly
coupled, the gain must be determined by a simultaneous solution of
the hydrodynamic equations and Maxwell's equation for the Stckes
wave. This solution has been found and is in good agreement with
experimental results. However, the expression for the gain which
is obtained when the coupling between the normal modes of the system
is included is quite complicated, so the dependence of the gain on the
various parameters is difficult to observe. For this reason, it is
desirable to investigate the gain which is obtained when the coupling
between the collective modes is ignored. In this approach, we
calculate separately the gain for scattering from the sound wave,
concentration diffusion mode and thermal diffusion mode. As a
first approximation then, the frequency shift of the scattered wave
should be the shift which is characteristic of scattering from whizh-

ever mode produces the highest gain.

2, The Coupled Equations

The sound wave equation, including the effects of the coupling
with the electromagnetic field Equation (2.49), may be written in the

form
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2 2 2
1 3°P . .o 8°T . 8p, 8°c 2
+ (LB g +< Q) VP
:‘i.«')—tz ac’'P, c ot 8?-
1 4 1 28P 8 8T
¥ p(,(3”+§)|:v?-V o T ac)p, T +<8T)P c at]
T
0 (2. 55)
. -0 o3¢ 2 2
8n (ap)T,cVE
9€,2
E( )
oap'c, T 1
41r(e+2) [;’Z Vp”ac)P TV“'( TP, c VZT]
T

The last term, which arises from Vz(g—;) in Equation (2. 49) results
in an intensity dependent contribution to the Brillouin shift in addition
to the contribution which was pointed out by Wanglo. The intensity
dependent effects for the gases used in this experiment are negligible
and are not included in further discussion. The concentration

diffusion Equation (2. 51) takes the form

ot

k k
Fo Ty

(2. 56)

De. 2 2.2, 0¢
DS v E pE*vA(ds)

Op Op
8potac'p, T 8"Polaclp, T

The last term may be evaluated by means of Equation (2. 54) in terms

of VZPI, Vzcl, VZTI. This term produces an intensity dependent



-55a

shift of the stimulated concentration scattering analogous to the
similar term in Equation (2. 55). The contribution of this term is
also small and will not be included in further calculations.

The thermal diffusion equation (2. 50) may be given in the form

_a;r_To“T_@g___( N To 25, aE®
8t ~ pocp ot P,T 3t ~ X 87pycp 8T P,c ot
(2.57)

where Maxwells' relations have been used to show

Qg ..
aP'T, c Po ?

where ar is isothermal expansion coefficient.

3. Gain for Scattering from Uncoupled Modes

a. Brillouin Gain
In the decoupled mode approximation, the Brillouin gain GB
is obtained from the sound wave equation and the Stokes wave equation

ignoring the dependence upon temperature and concentration.

2 n
o P _ _I 8 36 2
-73.5 VVP+ VZP 811’ pTc SVZE
(2. 58)
elw ) 2 2
- _8__ .1_ 9 Q.ﬁ
VzEs ) z Bs =2 72 Gplr,c PEL
co at c0 ot
where
Zpor
n < 2
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Substituting the steady state expressions (2. 53) one finds the

dispersion relation

222

2,22, 2 e 2 2 kv
(o -k VS+lgknT)(2g_‘s 'k)+ 1’( ) —‘ZT]E] = 0

€0 CoVT

(2.59)

The spatial gain of the Stokes wave amplitude is given by the

imaginary part of the Stokes wave vector. We make the following

separation
kS = kSr + 1GB GB < kSr
_ . 2 _ .2
S kr+IGB ?ws - ksr (2. 60)
0

k = 2k
ST

The Brillouin gain coefficient GB((,\) is then given by

. 2 2
1 Wg krYPO (gj)T CIE !

22,22 .20 | Po o 2, 12
°T¢0 ( ey Ty Py [81r (ap)T ¢ szlELI])

[¢]

GB(w) = R

The term in square brackets in the denominator gives the intensity
dependent pulling of the Brillouin frequency which was discussed by
Wanglo. For the system under investigation here, this term is a
small correction and will be ignored. Then the Brillouin gain

becomes



-57-

2

ook yn @S 1%
TR R A (2. 61)
2 2 .2 22

8T (w -k_v )+(kw"'")]

|E

GB(UJ) =

In the approximation that the inverse damping time for the sound
wave I' is much smaller than the sound wave frequency kvS

(I'< kv ), the Brillouin gain is maximum at

2
w = kzvz--l"zzkzv2
rs rs

The maximum value of the Brillouin gain is then given by

de
B} wleL' 90(35" T,c “B

~ GB(“’sz =kv.) anI"
s

15) e 32me,,

where 2

I, = ——am— is the laser intensity
and

= Wolag) (2. 62)

B
4c o Vgt

It should be noted that the Brillouin gain increases proportionally to

the square of the density.

b. Concentration Rayleigh Gain

The gain due to scattering from the concentration diffusion mode

e
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is obtained in the decoupled mode approximation from the equations

¢
oc .2  DiFlp g v'E
9 - pve - (2. 63)
2L 87 (9&)
Po‘ac’p, T
elw ) L2 2
_ . s 9_ -1 8 8¢

VZEs - 2 2 By =272 (ac)P,TCEL

CO ot co ot

Following the procedure used in the previous section, oae finds the

concentration gain Gc(u) is given by

2
. & _QSZ 2
G = Re i Dug G)p, 7 &y IEL ] -
: 2 (u ; 2 D“’i(%cg:)P.‘x lELIZ
8‘"CODO(E:)C)T,P twtDk™+ 87 CZ(QE) T
PoCo Yac'p, T

The term in the square bracket in the denominator gives the frequency
dependent pulling of the stimulated concentration frequency. Again,

this term is negligible. Thus the concentration gain is given by

2 9¢2 2

o . DKuyedp 1 |E, " o Pt

€ lemenp, () 24Dkt '
TComPo 5P, T L

2
This gain assumes a maximum value for a small Stokes shift ( =Dk

9¢,2
Gcmax _ _ ks( c)P T
—Smax . g - 5 (2. 65)
L 4cn’py Golp, T
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Since the coupling constant (g—g—) is proportional to the density, the
concentration gain is proportional to thé density.

Numerical values for the gain constants gp and g, are given
in Chapter IV,

The ratio of the gain constants for stimulated Brillouin and

concentration scattering is

Be.2
g | M T6oe 1 2. 66)
8 pl (&l (& ' '
0'9p’c, T ‘0c’'P, T

In this decoupled mode approximation, one would expect to observe
stimulated concentration scattering when this ratio is greater than 1.
From Equations (2. 46) and (2. 54), it follows that a large difference

in polarizibility and a larqge difference in mass of the two components
is favorable to make this ratio large. Furthermore, the total

density or pressure should be kept low since the ratio is inversely
proportional to the densitylz. For a gaseous mixture, Equation (2. 66)

can be simplified with the aid of Equations (2.45) and (2. 54) to

2
8. kvs rpo c'(l-c')(a.l-a.z) (2. 67)
gg NkgT  [a c'+(l1-c'a,]®

c. Thermal Rayleigh Gain

The thermal Rayleigh gain due to the stimulated scattering from

the thermal diffusion mode is obtained from the equations



-60-

oT . gPr- —0 e, 2E
at X 8mpycp 9T'P,c "ot
2 clog) 2 1 8% 9
= =L = — =£
vVE 2 z Eg 2 2 (BT)P,C TE,
o ot o ot
The thermal Rayleigh gain is given by
2 9€.2 2
oot - uaTolgrlp,c 1B " 2. 68)
w X .
T 167 CoPPCp w2+ XZ k4

One may observe that the form of the driving term due to the electro-
magnetic fields in the temperature equation is different from that in

the concentration and sound wave equations; and, as a result, there is no
intensity dependent pulling of the frequency of the stimulated thermal
Rayleigh line.

The maximum of the gain GT(w) occurs at ¢ = )(k2 and is given

by
9¢,2
GTmax _ _ ksTO(aT) 2.69)
I =87 5 T 3 (2.
L 4p0c0n Cp

The ratio of the gain constants for stimulated scattering from the
concentration ard thermal diffusion modes is

9¢,2
& _ _°pladp, T

g FISY T
T Tolgte,c GBelp, T

(2.70)



-6l

which, for a gas mixture, becomes

g cola, ~a,) [m,c'+m, (1 = c")]
Eg_ - Pl 2 2 1 - (2. 71)
T kB[c'a2+(1-c’)a2]

Numerical values for the gain constant gp are presented in

Chapter IV.

4. Complete Solution to the Coupled Equations

The behavior of the stimulated light scattering irom the gas
mixture is well described by this uncoupled mode approximation when
the helium concentration is low. As the helium concentration
increases, the mode coupling becomes stronger, and the sound wave
damping becomes comparable to the frequency shiit. In this case an
adequate description of the frequency dependence of the gain can be
obtained only by solving simultaneously the set of hydrodynamic
equations (2.55) = (2.57) and the Stokes wave equation (2. 52).

The gain of the Stokes wave due to scattering from the coupled
mode of the gas mixture GBCT(w) can of course be obtained in the
same manner in which GB’ Gc’ and GT were obtained. That is,
substituting the steady state expressions (2.53) into the coupled
hydrodynamic equations and the Stokes wave equation leads toa 4x4
secular determinant which gives the general dispersion relation. The
spatial gain of the Stokes wave amplitude is then given by the

imaginary part of the Stokes wave vector.
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For computational purposes, it is easier to sol\@ the three
hydrodynamic equations for the amplitudes of the pressure,
concentration, and temperature fluctuations and substitute the results
into the Stokes wave equation to obtain the gain. The manner in
which this solution is accomplished is as follows., The Stokes wave

is given by
- _L -iks rz-i(‘)st
Es(z t) = 3 Es(z) e +cc.

where

E (z) = E GZGBCT and E is a constant.
s s0 s0

Again assuming that the variation of the amplitude over one wavelength

is small,
BZE (z) oE (z)
—_%__ < k r - 2
-} S 9z
or GBcT < ksr , the Stokes wave equation becomes
8Es(z) ) wSZ EI_-‘. _8_6) p* R (3_6.) T*+(_a£) c*
9z . 2 2 9P'T,c "1 8T'P,c "1 ‘8c'T,P"1
Zxksrco 0

(2.72)

% k%
Since the three complex amplitudes Pl’ Tl’ c, are each proportional

L

result may be written as

to E Es(z) (again neglecting the intensity dependent terms), this

2
1 8E(2) 21w, NLS _ 2Tw, NLS
BeT ~ Es(z) 9z ik

G

1
>
I
0
o
=
—
3
>
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NLS

which defines ¥ as
xNLs = m [( )P +( )T +(—5)c] (2. 74)

After substitution of the expressions (2. 53), the coupled hydrodynamic

equations can be written in matrix form

W.:A = Y (2. 75)
1:’1
where A 1is the column vector cl
Ty

The matrix W has the form

p— -
iy .. 2. .2 . 2 . 2 . 2
24 (i +bk") + k 1w(§g)P’ pliw + k) w(—ﬂ ’C(lg)'l'bk )
VT
k
w = Dk® EE Dk +i Dk® =%
P T
0 0
T, a k
0 . A . 2
- iy —— —\I - iy ik (%)P T iw+ xk
L °p ko <p oc'F, .
(2. 76)

where

4 1
b = (gn+f o
3 Py
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and

And Y is the column vector

C 9
‘—0 .QS 2%
87 (ap)T,c k ELEB

2 2¢

v - Dk (aC)PJ E*E

81p, () L”s
Po¥ac’p, T

S¢
_Toletlpc .

87p oCp - ELEaJ

The solution for the Stokes wave gain due to the coupled
Brillouin, concentration and thermal diffusion modes of the gas

mixture GBcT may now be obtained in a straightforward manner.

The matrix equation (2. 75) is solved for the amplitudes P’; X c;‘ X T;' ,

which gives in turn the nonlinear susceptibility me. The gain

G then follows directly from Equation (2. 73). For the purposes

BcT

of calculation, we write

Gper * 8peT IL
_ c’o“lr'x..]?'. . . .
where IL = =55 is the laser intensity.

The complete solution for 8RcT is too lengthy to write out fully
here. A numerical solution has been made by use of a computer and

will be presented in Chapter IV. It is of interest however to determine
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the roots of det(W) since those are the points at which the gain has
a resonance, and therefore the points at which stimulated scattering
may occur. The approximate roots of det(W)are found considering
the dimensionless parameters (&5, (2%} and (2%) as small. For
Vg Vg Vg

the gas mixtures under consideration, all three of these parameters
are =~ 0.1. To lowest order (i.e. I = 0), the roots of det{(w) = 0 are
w=0, +v k. Inthe next approximation (0 < I' << kv ) when linear

3 E Ve s
terms in the small quantities are retained, the roots should correspond
to the values of the frequency shift which were obtained from the

decoupled mode approximation. One obtains
det(‘)-‘-'vz( cz )N w=2z,)w=v k=il}{y+v k -iI) (2.77)
W s W 1 [ 2 W s W . 5

The two roots

w = * vsk+il"k2

are the propagating sound wave modes with the damping coefficient I

given by
2
2 Dv
S Ay s | kT o0, @
I' = Zp, |G tO gD T GBe'p, Tt o5 TP, (B3P, T
Pelac'p, T I
’

(2. 78)

The positive root corresponds to the Stokes shifted stimulated
Brillouin which has positive gain, while the negative root corresponds
to the anti-Stokes wave which has negative gain.

It is important to note that in a binary mixture the sound wave

has an extra damping term due to the coupling with the concentration
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fluctuationsn. This extra damping depends on (-QQ)Z‘ and

oc’'P, T
consequently the sound wave is heavily damped in a mixture with a
large difference of component masses. Thus the threshold of
stimulated Brillouin scattering is increased by mixing. This factor
is of primary importance in making possible the observation of
stimulated concentration scattering. The roots which are related to

the nonpropagating modes are

1
22 )1 ‘ 1 2 Y3
w2 = tik {E(“@)i 5 lx + D) - 4xD] } (2. 79)
where 2
kT m
@ = D1+
Tocp (aC)P,T
when
. 2 ) 2
kT = 0, “’1,2 = iDk , lxk

The root w) corresponds to fhe concentration diffusion mode and

gives stimulated concentration scattering while the root wy corresponds
to the thermal diffusion mode which gives stimulated thermal Rayleigh
scattering. These roots have previously been obtained by Martin13,

and by Mountain and DeutchM. Thus the resonances in the coupled

gain exprossion, in the limit of small coupling between the modes,

do reduce to the values predicted by the decoupled mode approximation.
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CHAPTER III

EXPERIMENTAL APPARATUS AND TECHNIQUES

A. Introduction

In this chapter the experimental apparatus and techniques
developed to gene rate stimulated light scattering in the gas mixtures
under investigation and to measure the difference in frequency
between the laser and the stimulated light wave are discussed in
detail. The basic problem was to produce laser pulses with high |
intensity and sharp frequency spectrum, focus this beam into the
gas mixture and analyze the spectrum of the backward scattered
light with a suitably high resolution Fabry-Perot interferometer.

The necessary sharp frequency spectrum of the laser output
was achieved by careful axial mode selection of an existing ruby
oscillator. The high intensity of the laser output was attained by
constructing a ruby amplifier system.

Successful completion of the experiment was also due to the
development of a new technique for reaching stimulated oscillation
in the gas mixture with limited laser power. This technique is
applicable to facilitate the observation of any low gain stimulated
scattering process, as it lowers the required threshold power.

We now proceed to discuss the various parts of the

experimental apparatus in detail.



B. The lLaser

1. Ruby Oscillator

The ruby oscillator used in this experiment was a Maser Optics
Model 868. This laser has a double ellipse head. Optical pumping
of the ruby is done with two water-cooled Xenon flashlamps (E. G.
and G. FX47C-6.5). The ruby rod used was a Verneuil grown rod,

6 inches long by 1/2 inch diameter with a doping of 0. 04% Cr0+3.
This rod has the end faces perpendicular to the rod axis and the
optical axis of the ruby at 60 degrees to the rod axis. The rod was
water cooled by a Model K-2 Landau Circulator which maintained the
water temperature constant to within * 0.1 degree centigrade. The
ruby rod was of very poor optical quality, containing many small
bubbles and crystal dislocations, which was a primary contributing
factor in making single transvoerse mode operation of this laser
virtually impossibie. The laser cavity was defined by front and rear
reflectors separated by 150 centimeters. The rear reflector was a
quartz flat (1 inch diameter by 3/8 inch thick) with a surface figure
of 1/20 \. This flat was supplied by Perkin Elmer Corporation with
a high field damage dielectric coating with reflectivity of 99 + % at
69438 . The flat was mounted in a Model 10. 203 Angular Orientation
Device (A.0O.D.) supplied by Lansing Research Corporation. The
front reflector was a Model RR223-4 Resonant Reflector from Laser
Systems Corporation. The resonant reflector consisted of four
optically aligned quartz plates (i.e. an eight surface Fabry-Perot

interferometer) which provided excellent axial mode discrimination.
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This point will be discussed in greater detail later. The front
reflector was mounted in a Lansing Model 10. 253 A. O:D. On this
mounting, the mirror alignment is controlled by a differential screw
micrometer with an angular resolution of 0.1 arc second. The
Lansing mounts permit precise alignment of the laser reflectors to
be made easily and they are sufficiently stable that, with care,
adjustments in alignment needed to be made only about once every
two weeks.

The laser is Q-switched with a solution of cryptocyanine dye
dissolved in methanol. The dye cell was located between the ruby
rod and the rear reflector. The dye concentration was adjusted so
that the laser operates just slightly above threshold. This condition
was found to give the best reproducibility in laser power output and
the narrowest linewidth.

The rod holder supplied with the Maser Optics head had two
serious problems which required modifications to correct. This
holder was very unstable to mechanical vibrations making it im-
possible to hold exact alignment of the rod with the cavity mirrors
for more than a few hours. Also in the original design, the rod
cooling water flowed past both faces of the rod with the rod holder
sealed at both ends by 1/8 inch thick quartz windows. These windows
were of poor optical quality and it was not possible to align them
parallel to the cavity mirrors. The windows and water in the beam
path introduced off-axis reflections and scattering in the beam which
increased beam divergence. A new rod holder was designed in which

the rod faces were exposed to air, thus eliminating the unnecessary
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quartz windows. This holder was also attached securely to the laser
base plate which greatly improved stability against rr;eché‘enical
vibration.

After mechanical stability of the laser head and cavity mirrors
had been achieved, the problem of mode selection was undertaken.
It was necessary to produce consistent, single axial mode output of
the laser in order to perform the high resolution spectroscopy
required to observe the stimulated Brillouin and concentration

scattering from the gas mixture.

2. Mode Selection

a. Modes in an Optical Resonator

The general problem of tle interaction of an excited atomic
system with the optical cavity is of primary importance in under-
standing laser behavior. The earliest proposal for using open
resonators, consisting of a pair of opposing plane or curved reflectors
was that of Dickel. Schawlow and '1'ownes2 suggested that sucha
resonator will discriminate heavily against modes whose energy
propagates along directions other than normal to the reflectors. In
order to support high Q (low loss) field modes, the dimensions of the

reflectors must satisfy the condition

2

a
D 21 (3.1)

>

where a is the radius of the reflector, \ the radiation wavelength and
D the reflector separation. Also there must be a family of rays which

upon sequential specular reflection do not miss either reflector before
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making a reasonable number (~ 20-100) of passes. An open resonator
which satisfics these two conditions is referred to as a stable
resonator. Thecretical studies of the modes in a stable, open
resonator have been made by Fox and Li3, Boyd and Gordon4, and
Boyd and Kogelniks. The result of this analysis has been to show
that, for any stable resonator, there exists a set of steady state,
discrete standing wave modes specified by three indices (TEMm’ 0y q)"
These modes take the form of almost plane wave beams which
propagate back and forth between the reflectors. The field intensity
distribution of the modes depends upon the parameters of the optical
cavity: shape, dimension and curvature of the mirrors and their
separation. The q index specifies the number of half wavelengths
which are contained in the distance of the mirror separation D, This
index is the longitudinal mode index. The values of the indices m, n
for the observable modes of an optical resonator are small and they
specify the transverse mode pattern TEMm’ n'
The electric field distribution of the transverse modes is
calculated by use of the scalar formulation of Huygen's principle to
compute the field at one of the mirrors in terms of an integral of the
field at the other. The steady state transverse modes are then
specified by the requirement that the field pattern at one reflector be
reproduced after one round trip of the cavity ‘multiplied by some
complex number which gives the total phase shift and loss. The

resulting integral equation is solved by use of a computer.

Ordinarily within the active volume of the laser crystal many
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longitudinal and transverse modes are excited, each transverse
mode ha’ing a cross~-sectional area much smaller tha;n the total
cross~sectional area of the active volume. This behavior is
characteristic of 2 laser medium which is optically inhomogeneous,
has inhomogeneous distribution of excited ions (resulting from non-

uniform pumping) and long spatial cross relaxation time (~ 10-6

second for ruby).

For a plane parallel resonator, the mode separation is

approximately given by
1 1 1 AD 2 2
AlS) ~ 5= AqQ + 5~ (—5) (2mAam + (Am) + 2nAn + (An ] 3.2

where a is the radius of the mirror. This approximation improves

2
rapidly with increasing Fresnel number :—D. The longitudinal mode

separation given by Aq =1 is easily resolvable and is given by

A(%\-) = Ay = —2-13 The mode separation corresponc g to Am or An =1

is rmuch smaller and usually not resolvable at optical frequencies due

to large Fresnel numbers and low reflectivity of practical laser

resonators. For the laser used in this experiment:

1 _ -1
3D .003 cm

3.3
.2 (3.3)
D ~ 100

so the spread in frequency of the first few lowest order transverse
modes is ~3 x 10”5 cm-l (1 MHz).

To do high resolution spectroscopy of stimulated light scattering
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which requires focusing of the laser beam into the scattering medium
to produce sufficient intensity to reach threshold for s'timulation, it

is desirable to limit the laser output to a single longitudinal and

single transverse mode. The techniques used to effect mode selection

are discussed in the following sections.

b. Longitudinal Mode Control

Zor ruby at room temperature, the natural fluorescent line-
width of the R lines is approximately 10 cm-l. The longitudinal mode
spacing for a cavity 150 cm long is ~.003 cm-l. So in general,
many longitudinal modes will be close to the maximum of the gain
profile and will oscillate. The number of longitudinal modes may be
limited by reducing the cavity length and operating the laser at low
temperatures so that the fluorescent linewidth becomes narrow enough
to allow oscillation in only one axial mode. It is, however, more
desirable to obtain mode control at room temperature. This may be
done, as was first suggested by Kleinman and Kisliuk6, by introducing
additional reflecting surfaces inside the resonator. In particular, if
the front reflector is replaced by an etalon and the laser operated
just above threshold, only those modes which are reflected in phase
from both sides of the etalon will oscillate. The selected modes are
then modes of the etalon itself. The etalon thickness may be adjusted
so that only a few of its fundamental modes will be near the maximum
of the laser gain profile., If additional reflecting surfaces are added

the conditions on the possible oscillating modes become more

MW

stringent. With the ruby oscillator power output of ~10 - 20
cm
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it was found by trial that the resonant reflector consisting of four
optically aligned quartz plates provided sufficient axi‘;l mode
discrimination that a single axial mode output was consistently ob=-
tained. This resonant reflector was constructed so that the optical
path length was the same in the air gaps between the plates as in the
plates themselves. A computer calculation of reflectivity of the
resonant retlector as a function of wavelength was made7 by extending
the analysis given by Born and Wolf8 of the two surface problem.

The results of this calculation are shown on Figure (3.1). The
reflectivity peaks are separated by about 1R (2 cm-l) and the width
of the peak is about 0. 18 (0.2 cm-l). The maximum reflectivity is
~ 64%. The reflectivity peaks were sufficiently sharp and well
separated that only a single axial mode reached oscillation threshold.

The spectrum of the laser output was examined with a 6 cm
Fabry Perot interferometer. A typical result is shown in Figure
(3.2a). It is clearly evident that only a single mode is oscillating
and its linewidth is <. 005 cm-l. The primary factors contributing
to the laser linewidth are optical inhomogenieties of the ruby crystal
and dye cell, reflector imperfections and mechanical vibrations of
the cavity reflectors.

The temporal behavior of the laser Q-switched pulse is
monitored by a TRG 105B planar photodiode. This photodiode has a
rise time of <0. 3 nanosecond. The photodiode output is displayed
on a Tektronix 519 oscilloscope with a rise time of ~ 0.3 nanosecond.

Any temporal modulation of the laser output can easily be detected.
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Fig. 3.1 Reflectivity versus Wavelength for the Resonant Reflector
Consisting of Four Parallel Quartz Flats
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(a)

NOT REPRODUCIBLE

(b)

Fig. 3.2 (a) Frequency Content of the Laser Pulse Analyzed by
6 cm Fabry-Perot Etalon

(b) Oscilloscope Trace of the Laser Pulse. The Scale
is 20 ns/division
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If the oscillator is carefully aligned and operated slightly above
threshold the temporal behavior of the laser pulse is as shown in
Figure (3.2b). There is no visible modulation which confirms the
oscillation of only a single axial mode. If the laser is operated
considerably above threshold, the time trace shows modulation due
to the beating of two or more axial modes. The relatively long time
duration of the laser pulse indicated by Figure (3. 2b) (~ 50 nano-
seconds) for a laser of this type is due to the high reflectivity of the
resonant reflector. This leads to high cavity Q. As the oscillator
power output is increased from ~ 5 MW/cm2 to ~ 20 MW/cm2 with
the dye concentration also increased so that laser.threshold is only
slightly exceeded, the pulse duration drops from ~ 50 nanoseconds to
~ 20 nanoseconds.

There has been some recent consideration of the frequency

9

drift of a Q-switched ruby laser during the pulse. Pohl’ has
s1ggested that the drift is due to changes in the refractive index of

the ruby and/or the saturable dye due to a time varying population
inversion. He observed a drift of 350 MHz (~ 0.12 cm-l). It appears,
however, that this effect is not the same for all lasers since the

total linewidth of this laser including any frequency drift is less than

150 MHz.

¢. Transverse Mod.: Control

The reason why it is desirable to suppress oscillation of all
but the lowest order transverse mode TEMoo is that all higher order

modes have a larger divergence. The very high values of electric
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field intensity (~ 1011 W/crnz) which are required to observe the
stimuliated concentration scattering are reached by focusing the laser
beam. A beam with divergence angle 6 will be focused by a lens of

focal length f to a spot of diameter
d = 6. (3.4)

Thus to obtain a particular threshold intensity at the focus of a lens,
the total power output of the laser is minimized if the beam has the
minimum divergence.

A laser beam which has only TEMoo oscillating is commonly
referred to as a diffraction limited beam and has divergence angle

approximately given by

n\

D.L. - 4 (3.3)

where n is the index of refraction of the crystal and d is the dia-
meter of the active area. When several transverse modes are
oscillating, the beam divergence angle is given by the square root
of the number of modes which are oscillating multiplied by the
diffraction limited divergence angle GD.L. (under the assumption that
if a particular mode TEMm’ is oscillating all the lower order modes
are also oscillating).

The usual technique for transverse mode selection makes use
of the fact tnat the diffraction losses for the TEMoo mode are less
than for any other mode. An aperture may be introduced into the

cavity with diameter chosen so that the loss of higher order modes

is increased sufficiently that they will not oscillate. Various
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combinations of lenses may be used in addition to the aperture, but

the principle is the same. In attempts to transverse r'node select the
laser used in this experiment, apertures of various sizes were

tried, with and without lens combinations, both with flat rear re-
flector and a spherical rear reflector with 10 m radius of curvature.
None of these methods gave 'I'EM00 operation of the laser. The ob-
served beam divergence eexp. ~ 10 GD' L. indicates that approximate-
ly 100 transverse modes were oscillating. It is now clear that the
reason for this behavior is the poor optical quality and the non-uniform
pumping of the rod inherent in the double ellipse head design. In this
case the laser oscillates in several areas with local conditions
determining the mode properties. The areas may oscillate indepen=-
dently., This behavior is enhanced with high power Q-switched
operation where the transient effects of gain saturation may lead to

severe mode dissi:ortion10

d. Near and Far Field Patterns

The spatial and angular distribution of the field in the laser
beam are given by the near (Fresnel zone) and far (Fraunhofer zone)
patterns respectively.

2
The near field is the region close to the laser compared to 2

>

(~ 5 m for this laser) where a is the beam radius. The near field
pattern may be observed by exposing film to the laser beam (with
suitable attenuation) close to the laser. A lens may also be used to
magnify the beam so the detail of the spatial distribution is more

easily observed. The near field pattern of this oscillator with
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magnification of four is shown in Figure (3. 3). This photograph shows
that the beam consists of many small diameter (~ 250u) filaments,
which are due to the interference of many transverse modes. It is
exactly this type of output which one tries to avoid by transverse mode
selection because these ''hot spots'' easily produce damage in the
amplifier stage.

The far field is the region far from the laser compared to —;—;.
In this region, all of the light traveling in a particular direction
arrives at some point, i.e. the spatial distribution of energy in the
far field is directly related to angular distribution of energy in the
beam. The far field pattern is also produced in the focal plane of a

simple lens. If then the beam is focused onto a film plate, the beam

divergence angle 6 can be measured from the relation
9 = ¢ (3. 7)

where d is the spot diameter and f the focal length of the lens. For

this laser the beam divergence measured in this manner is ~2 mr.

3. Amplifier

In order to produce the laser power required to reach threshold
for stimulated concentration scattering it was necessary to build a
ruby amplifier. The advantage of the oscillator-amplifier system over
a very high power oscillator is that the high power can be reached
while maintaining a single axial mode and consequently a narrow line-
width. The well controlled beam from the low power oscillator is

amplified on a single pass through the optically excited ruby amplifier
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Fig. 3.3 Near Field Pattern of the Ruby Oscillator with Magnification
of 4
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rod. Since the amplifier gain is maximum at the center of the output
spectrum from the oscillator, there should be some ga;n narrowing
of the spectral profile. The amplifier system used in this experiment
was built by the author. The necessary design considerations are

briefly reviewed in the next section.

a. Design Considerations

The amplifier head was built to make use of a Vernuil ruby rod
7 inches long by 5/8 inch diameter with Brewster angle cut at each
end. The maximum gain from ruby is approximately two for each 2
inches of length. The maximum gain for this rod is therefore ~11.
The rod was water cooled at room temperature and mounted in a
double ellipse cavity. The optical pumping was achieved with two
water cooled E.G.G. Incorporated FX67-7 Xenon flashlamps. Energy
storage for the amplifier consisted of two 375 F and one 480 F
capacitors rated at 4 kilovolts. The necessary capacitance was
calculated from the maximum safe energy loading for the quartz
flashtubes. An old, laboratory built power supply was modified for
use with the amplifier. The circuit diz.gram is shown in Figure (3. 4).
The circuit which was used to trigger the amplifier flashlamps is
shown in Figure (3.5). To obtain maximum gain from the amplifier,
it is necessary to trigger it at a short time (~ 200-400 seconds)
after tle oscillator has been triggered. Circuitry which performed
this operation was designed and builtn. It consists pr.marily of
sequentially triggered monostable multivibrators. The operation of

the timing circuit is indicated schematically in Figure (3. 6) and the
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Fig. 3.7 Sequence of the Timing Circuit Operations
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timing of the various stages is shown in Figure (3.7). Several
features which improved the safety of the laser opera.tion were
included. The timing circuit operation basically is as follows:
Initially all of the circuits are disabled by the ''off'' state of the
bistable gate. Thus, no random noise or line voltage fluctuation
can fire the laser. The firing sequence is initiated by making a
ground connection with the trigger switch. This causes the manual
pulse circuit to put out a pulse which turns the bistable gate to the
'"'on'' state and starts the two second delay. During the two second
delay an audible buzzer signal is given to warn anyone in the area
that the laser is about to fire. During these two seconds, the output
pulse circuits are still disabled, so that no premature firing will
occur. At the end of the two second delay, the one second delay is
begun and the relay driver is turned '‘on'' which ~nables the output
pulse circuits. At the end of the one second delay, the oscillator 's
triggered by output pulse 1 and the variable delay is started. The
duration of the variable delay can be set for 0-2 milliseconds with
a 2p second resolution. At the end of the variable delay, the
amplifier is triggered by output pulse 2. About 0.5 second later the
relay driver turns off which initiates the disable circuit. This
disables all the circuits for 7 seconds, after which the laser may
be fired again.

The relay logic panel shown in Figure (3.8) is a further safety
precaution. The logic panel performs the following functions: In the

event of an emergency, the oscillator and amplifier power supplies,
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timing and trigger circuits may all be turned off by a single switch.
Also, if the amplifier power supply, timing or trigger circuit or the
aluminum table top should become ungrounded, power to the offending

unit is shut off and the capacitor banks are discharged.

b. Operation

The amplifier performance is determined by measuring the
input and output energy of the beam. The ratio gout/ein is the
amplifier gain. The experimental arrangement used to make: this
measurement is shown in Figure (3.9). The capacitors serve to
integrate the photodiode current so that the height of the pulse
displayed on the oscilloscope is proportional to beam energy per
unit area.

Using this arrangement, the amplifier gain was measured as
a function of the voltage applied to the flashlamps and also as a
function of the delay between triggering the oscillator and amplifier.
It was found that the delay time which produced maximum gain
increased as the amplifier pumping energy increased. This resuit
is due to the fact that maximum inversion in the amplifier rod is
reached more quickly as the pumping energy is increased. Thus
the oscillator pulse must arrive sooner after the amplifier flashlamps
have been triggered in order to see the maximum inversion in the
amplifier rod. The delay which gives maximum gain varies from
~ 200 p. seconds for pumping voltage of 2. 6 kilovolts to ~400 p
seconds for pumping voltage of 3.0 kilovolts. The amplifier gain as

a function of the square of the pumping voltage is shown in Figure
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(3.10). The value of gain given in each case is that obtained with the
optimum delay. Saturation of the gain is evident wher‘l the pumping
voltage exceeds 2.8 kilovolts. At 3.0 kilovolts the maximum gain of
11 has been reached.

The maximum intensity achieved with the amplifier was
approximately 200 MW/cmZ. This power level however produced
damage in the amplifier rod in the form of a small chip at the center
of the exit face of the rod and a bubble about 1/2 ¢cm in from that
surface. Good quality rubies produced by the Czochralski technique
are capable of withstanding intensities in excess of 1 GW/cmZ. The
reason that this rod damaged at much lower power was that it has a
definite core i.e. large optical inhomogeniety down the center of the
rod, which greatly reduces the damage threshold. Also the oscillator
beam has many small diameter hot spots as shown by the near field
pattern Figure (3. 3) which gives local regions of much higher
intensity than the average beam intensity. To avoid further damage
to the amplifier rod, a 2:1 inverted telescope was inserted between
the oscillator and the amplifier. Also a small area was ground on the
beam splitter which is before the amplifier. This ground spot
scattered the center of the oscillator beam and so prevented light
from traveling down the core of the amplifier rod. An aperture with
diameter slightly smaller than the amplifier rod diameter was also
inserted before the amplifier. The purpose of this aperture was to
prevent light from the oscillator from falling on the beveled edge of

the amplifier rod and thus avoid any chance focusing of the beam in
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the amplifier rod. The combination of these additions were success-
ful as no further damage to the amplifier rod occurred:

Whenever a laser beam is directed into a material which
scatters light coherently in the backward direction (stimulated
Brillouin scattering is an excellent example) there is some danger
that the backscattered light will re-enter the laser and cause damage.
With an amplifier this danger is increased. The intensity of the
backward stimulated Brillouin scattered light may be ~10-20% of the
intensity of the laser beam. When this field passes back through the
amplifier its intensity is increased by a factor of 10. Consequently
the field intensity of the backscattered light when it arrives at the
oscillator may be as high as the original output from the amplifier
and can cause damage in the oscillator rod. Even if no damage should
occur, there is still another problem caused by the feedback. After

the backscattered light has passed back through the amplifier and

oscillator it will come out again as a new laser pulse, pass back through

the amplifier and if sufficiently intense, will stimulate for example,
the second Stokes Brillouin line. This behavior was observed when
the laser beam was focused into SF6 gas at 10 atmospheres pressure.
The field oscillated back and forth between the gas cell and laser,
stimulating a higher order Brillouin Stokes line with each pass. As
many as the first 10 Brillouin Stokes lines of SF6 were observed by
use of a Fabry Perot interferometer in this manner. The oscillation
continues until the amplifier gain has decreased to the point that the

laser intensity is insufficient to stimulate the next Stokes line.
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Ideally the laser should be isolated from the scattering
material by a Kerr cell or a Faraday rotator. Lackiné this
equipment, another method was used. A dye cell was placed
immediately after the amplifier and a 50 nanosecond optical delay
between the laser and experimental area was introduced. The final
arrangement for the oscillator-amplifier system is shown in
Figure (3.11). After passing through the amplifier and dye cell, the
beam is turned by 90 degrees by an arrangement of two prisms shown
in Figure (3.12). This arrangement also rotates the beam polarization
from horizontal to vertical (this is true because the beam polarization
remains perpendicular or parallel to the plane of incidence upon
total internal reflection). The polarization is rotated because
vertical polarization is desired for the experiment. The beam then
travels a distance of 6. 78 m to the spherical mirror. This distance [
is equal to the mirror radius of curvature so the mirror reimages
the beam with 1:1 magnification at a position just to the right of the
double prism as indicated in Figure (3.11). The laser output is then
directed into the cell containing the gas mixtures under investigation.
The total time then required for light to make a round trip from the
amplifier to the gas cell and back to the amplifier is ~ 100 ns which
is approximately the duration of the laser pulse as shown in Figure
(3.2b). Thus the end of the laser pulse has left the amplifier before
the front of the backscattered pulse has reached the amplifier. The
dye concentration in the amplifier dye cell is adjusted so that it

bleaches when the laser pulse passes through but not when the back-
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scattered pulse passes through. This introduces enough loss in the
backscattered beam that it will not be amplified to suffitient intensity

to stimulate any further scattering.

C. Fabry Perot Interierometer

In this experiment the occurrence of stimulated Brillouin or
concentration scattering is detected by observing the frequency shift
from the laser frequency of the backscattered light from the gas
mixture. The range in frequency shift which must be observable is
0.005 cm ™" (150 MHz) to 0.03 cm”! (900 MHz). Detection of a
frequency shift in this range can be accomplished by a plane parallel
Fabry Perot interferometer (FPP) with spacing between the plates
on the order of 4-8 cm.

The general theory of the FPP is well knowns, so this section
is confined to the consideration of factors which were important in the
design and operation of the FPP used in this experiment.

The optical arrangement for use of the FPP is shown in Figure
(3.13). The incident collimated beam of light is diverged by lens Ll.
For light traveling in certain directions, the phase shift for one round
trip of the FPP is an integral multiple of 27. In those directions the
interference is constructive, and the interference pattern in the
focal plane of the lens L2 is then a series of concentric rings. The

diameter of pth bright fringe is given by

2
1
p? = M (po1te) (3.8)
P nh
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where n',n are the index of refraction of the air between the plates,
and outside of the plates respectively, \ is the wavelen.gth of the light
in vacuum, h is the plate separation and e the fractional order at the
center of the ring pattern.

The resolving power of the FPP, i.e. the minimum frequency
difference of two monochromatic components which can be resolved,

is given by

8K = 3= (3.9)

where F is the instrument finesse which is defined as the ratic of the
fringe separation to the halfwidth of the fringe due to a monochromatic

line. The fringe separation (free spectral range) is given by

N .
(8K)psR * Zn'h (EollE)

Each loss mechanism present in the FPP cavity contributes to the
cavity lifetime and therefore also contributes to the finesse. The
finesse F‘i associated with the ith loss mechanism is related to the

corresponding contribution to the cavity lifetime TS by

TcT.
F. = L

i Zn'h (3.11)

The net instrumental finesse is given by

rl - S F] (3.12)
i
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The major contributions to the finesse are mirror flatness and
. . . A .
reflectivity. For mirrors with oy surface figure and reflectivity R,

the associated values of finesse are given by

~ I
Fp z

FR 1-R (3.13)

Diffraction losses usually play no significant role in determining

overall finesse. The diffraction limited finesse is given by

2
a
FD >~ 3R (3.14)

where a is the aperture diameter.

The Fabry Perot interferometer used in this experiment had

quartz plates with -2%)- surface figure, reflectivity 98% and plate

separation of 6 cm. The relevant parameters for this case are
1

(AK)FSR = .083cm

FF ~ 100

(3.15)

F, ~ 150

R

FD ~ 1000

The actual instrumental finesse which depends, in addition to the
factors already mentioned, on mirror alignment and mechanical
stability of the FPP mounting, was about 25. This gave a resolving

power
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AK &~ .003cm ! (90 MHz) (3.16)

The Fabry Perot mounting is showa in Figure (3.14). The main
housing and end plate were aluminum. The spacer was made of
Invar. One of the quartz plates was held against the spacer by three
steel ball bearings. The other plate was held by three phosphor-
bronze springs. This plate was aligned to be parallel to the other
plate by the fine adjusiment screws on the phosphor-bronze springs.
Alignment of the FPP was done by observing the ring pattern
resulting from illumination by a He=Ne laser. It is important to
make the alignment with as little pressure as possible on the quartz
plates to avoid any deformation which would lead to a reduction in

finesse.

D. Experimental Arrangement

The first experimental arrangement which wi.s used to detect
the frequency shift between the laser and the stimulated emission
from the gas mixture is shown in Figure (3.15). The collimated
beam from the laser entered from the direction indicated by the
arrow. Approximately 8% of the beam was split off by the glass
beam splitter BS1. The polarization of this light was rotated from
vertical to horizontal by the z=cut quartz 1/2-wave plate. It then
reflected through the prism and passed through a calcite polarizer
which was set to transmit horizontally polarized light. The
remainder of the beam was focused by lens L3 (focal léngth 15-4C cm)

into the gas mixture. If the beam intensity at the focus of lens L3
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was sufficiently high to reach threshold for the stimulated scattering
process, the intensity of the backscattered light was o.n the order of
10% of the incident laser intensity. About 8% of the backscattered
beam was split off by beamsplitter BS2 and recombined with the laser
light which passed through the polarizer. The total beam was then
diverged by lens L2 and passed through the FPP. The interference
pattern from the FPP was focused by lens L2 through the crossed
polarizers onto the Polaroid film. A typical example of the results
obtained is shown in Figure (3.16). The interference fringes from the
laser light appear in quadrants 1 and 3 of the crossed polarizers and
the fringes from the backscattered light appear in quadrants 2 and 4.
The crossed polarizer plate was made from squares of FPolaroid
NH32 sheet polarizer. This material is a neutral color linear
dichroic polarizer. The transmission for an unpolarized beam is
32% and the extinction transmittance is 0. 005%. The Polaroid film
used was type 413.

The frequency shift was determined from the difference in
diameter of the interference fringes which were due to the laser and
the stimulated backscattered light. This measurement will be
discussed later.

An estimate of the laser intensity which is required to produce
stimulated scattering on the gas mixtures can be made as follows.
In order to reach the threshold for stimulated oscillation in the gas
mixture the Stokes wave gain coefficient must be on the order of ten1
i.e.

E(ug) (wg) e (3.17)

E_ .
noise



P s

-106-

NOT REPRODUCIBLE

Fig. 3.16 Interference Fringes from 4 cm Fabry Perot Etalon
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where E (us) is the amplitude of the noise field at the Stokes

noise
frequency Wge The noise field arises from spontaneous scattering
from zero point or thermal fluctuations in material mode. This

observation can be used to make an estimate of the laser intensity

required to produce stimulated scattering. Thus

gliz = 10 (3.18)

where g is the Stokes field gain coefficient, IL is the laser field
intensity and z is the path length over which gain occurs. The
maximum gain for the concentration mode as shown in Figure (4. 3)
is 10-10 cm/W. Thus for z ~ 1 cm, one must have IL ~ 1011 W/cmz.
For a laser output of 100 MW/cm‘2 with a beam cross-sectional area
of 1 cmz, the laser power is 108 W. With a beam divergence of 2 mr,
the beam area at the focus of a lens with 20 cm focal length is
~10-3 cmz. Therefore the laser intensity at the laser focus is
IL ~ 1011 W/cm'2 which is the proper magnitude to produce stimulated
Stokes wave oscillation.

Using the experimental arrangement shown in Figure (3.15),
stimulated scattering was successfully observed in gas mixtures
with Helium concentrations up to 60%. However the laser intensity
required to produce stimulated scattering in the gas mixtures with
higher Helium concentrations was approximately 200 MW/cm‘2 in the
collimated beam. As discussed earlier, this intensity produced

damage in the ruby amplifier rod. Consequently it was necessary to

find a way to produce stimulated scattering with a reduced laser
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power. Certainly if a field with frequency wg could be introduced
into the gas cell traveling in the backward direction, the gain required
to amplify this Stokes field to the oscillation threshold would be less
than the gain required to build up to oscillation from the noise field.
Of course an essentially monochromatic field with frequency wg is
not available, but it is easy to produce a field with a broad frequency
spectrum beginning at the laser frequency and extending on the Stokes
side. When such a broad spectrum field traveling in the backward
direction is present in the gas mixture simultaneously with the laser
field, the gain of the medium will amplify the portion of the broad
spectrum which is at the frequency wg* The broad source eifectively

increases the amplitude of E (""S)' A broad spectrum of the

noise
nature described can be produced by stimulated Rayleigh wing
scattering in liquids containing molecules with a large anisotropy in
the polarizibility (large quadratic D.C. Kerr effect). Examples of
such liquids are CSZ’ benzene and many of its derivatives. A simple
description of Rayleigh wing scattering can be given as follows.
Consider a fluid composed of cigar-shaped molecules which have a
different value for the polarizibility parallel and perpendicular to the
axis. Now suppose there are two light fields present: an incident
field with frequency wy, and a scattered field with frequency wg
close to Wy, The two field will interfere and the resultant field i.s
modulated at the difference frequency wy, ~ wgr If the characteristic

molecular orientation time 7 is not too long, the molecular

orientation and therefore the polarizibility can follow the modulation
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at wy - wg This process results in a large material polarization at
the frequency Wg which leads to enhancement of the scattered wave

intensity. The frequency dependence of the Rayleigh wing gain is

given by
Glug) (b - kg
- 2
ZGmax 1+(wL'us)'r

L 'wS) 7 = 1. The value of Gmax depends

upon the ellipticity of the incident light and upon the scattering angle.

h is th ain at
where Gmax i e gain (w

This gain produces a Stokes shifted Rayleigh line which has been
observed by several authors13 and a theory which describes most of
the experimental results has been given by Chaio and Godine14

Foltz et. al. 13 have also observed that excitation with linearily
polarized light produces in the forward direction a diffuse Stokes wing
of the same polarization with the maximum intensity at Wy - This
case has been treated by Chaio, Kelly and Garmirels. As a result of
Stokes=-anti Stokes coupling, scattering in the near forward direction
was shown to be dominated by the degenerate light by light scattering
with no shift in the scattered light irequency.

Several liquids were investigated for use in this experiment
(CSZ, nitrobenzene, acetone, aniline, and quinoline). Nitrobenzene
produced the most satisfactory results. For nitrobenzene 7=4.78 x
10-11 sec. The frequency dependence of the Rayleigh wing gain for
nitrobenzene is shown in Figure (3.17).

The experimental arrangement which was used is shown in
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Figure (3.18). The collimated linearily polarized beam from the
laser entered as indicated by the arrow. It passed through the glass
beam splitter BS1 and was focused by lens L3 (focal length 15-40 cm)
into the gas cell GC. After passing through the gas cell the beam was
recollimated by lens L4 (focal length 20 cm) anc then focused by lens
L5 into the liquid cell LC wrich contained nitrobenzene. The laser
beam self-focused in the nitrobenzene and produced strong stimulated
Brillouin scattering with a frequency shift of 0.26 cm-1 in addition

to the stimulated Rayleigh wing scattering. Denariez and Bret13
have investigated the stimulated scattéring in nitrobenzene. Tley
found that the Brillouin gain is ~10-5 cm/W while the maximum of the
Rayleigh wing gain is ~ 5 x 107% cm/W. However the Brillouin time
constant is ~ 10-9 sec compared to ~10.12 sec for the Rayleigh wing.
Thus the Rayleigh wing reaches steady state conditions before the
Brillouin mode so that both stimulated processes are observed. The
backscattered light from the nitrobenzene was recollimated by lens
L5. Approximately 8% of this beam was reflected by the glass beam
splitter BS2. This portion of the beam was directed around the gas
cell by the prisms Prl, Pr2. Its polarization was rotated from
vertical to horizontal by the half wave plate P. The remainder of the
backscattered light from nitrobenzene passed back into the gas cell
where it interacted with the gas mixture and the laser beam in the
focal volume of le- 1.3. Approximately 8% of the beam traveling in
the backward direction out of the gas cell was reflected by the beam

splitter BS]1 and recombined with the portion of the light from the
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liquid which had traveled around the gas cell. The combined beam
was then analyzed by the FPP in the manner described earlier. A
typical example of the FPP fringes photographed with this arrangement
are shown in Figure (3.19). The fringes which appear in quadrants
1 and 3 are due to the light from the nitrobenzene which has traveled
around the gas cell. This is then the input spectrum in the backward
direction into the gas cell consisting of the nitrobenzene Brillouin
line as indicated in Figure (3.19) and the Rayleigh wing. The Rayleigh
wing intensity is too low to appear on the film, in addition to which it
is much broader than the free spectral range of the FPP and so would
appear only as a general fogging of the photograph. The FPP fringes
which appear in quadrants 2 and 4 give the output spectrum from the
gas cell. This consists of the nitrobenzene Brillouin wave which has
simply passed through the gas cell, a portion of the incident laser
beam which has been reflected from the gas cell window and the
stimulated line from the gas mixture. By monitoring the spectrum
input to the gas cell one can be certain that the line, which is
attributed‘to the gas mixture, was not by some process coming from
the nitrobenzene.

This technique of using a broad spectrum to assist the
oscillation of a low gain process has to the author's knowledge never
been used before. Its effectiveness is illustrated by the result that
the laser intensity required to produce stimulated Brillouin scattering
(SBS) in SF6 gas at a pressure of 5 atm dropped from 60 MW/cm2 in
the collimated beam when the beam was simply focused into the gas to 20

MW/cm2 when this amplifier technique was used. The reduction in thelaser
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power required to reach stimulated oscillation utilizing this technique
was the singular factor which allowed completion of the experiment
with the existing laser system. It was then possible to produce
stimulated scattering in gas mixtures with Helium concentration as
high as 90%.

Since the peak intensity of the Rayleigh wing spectrum occurs
at a shift of 0,111 cm-1 it was necessary to investigate whether using
the amplifier technique introduced any pulling of the frequency of the
stimulated scattering in the gas mixture. This wis done by studying
the frequency shift of the stimulated lifxe in gas mixtures with low
Helium concentrations. In these mixtures the laser intensity was
great enough to produce oscillation by simpling focusing into the gas
mixture as well as with the amplifier technique. The shift in frequency

was the same in both cases within the accuracy of the measurement.

E. Gas Handling Equipment

The system diagrammed in Figure (3.20) was constructed to fill

the gas cell and measure the pressure of the gases contained in the
cell, All of the tubing used was 1/4 inch outer diameter copper
tubing. Tubing connections were made with Gyrolok fittings. These
fittings proved leak free at pressures as high as 1200 psig. Before
filling, the entire system was evacuated by a Precision Scientific
Model 25 vacuum pump. System vacuum was monitored by an NRC
Model 501 thermocouple gauge. After evacuation, the SF6 or Xenon

gas was slowly leaked into the system until the desired pressure was
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reached. System pressure was measured by the two pressure gauges
indicated in Figure (3.20). Both gauges were made by U. S. Gauge
and were purchased from Matheson Gas Products. The low pressure
gauge was a high accuracy gauge, accurate to 1/2% over the entire
scale. The gas mixture was made by slowly leaking Helium gas into
the system until the required total pressure was reached. At least
one hour was allowed for complete mixing to take place before any
measurements were made. There was no observable change in the
scattered light spectrum when longer mixing times were allowed.

The Helium gas used in this experiment was supplied by the
U. S. Navy. The Xenon and SF6 were purchased from Matheson Gas
Products. The SF6 is inexpensive and so was simply discarded when-
ever necessary to change concentration. However Xenon gas is quite
expensive and so it was desirable to trap and recycle the gas. This
can easily be done since Xenon freezes at 161 degrees Kelvin. The
reservoir shown in Figure (3. 20) was immersed in liquid nitrogen
(77 degrees Kelvin) and time was allowed for the system pressure to
come to equilibrium. At this time all of the Xenon was frozen in the
rese>voir. The vapor pressure of Xenon at 77 degrees Kelvin is less
than 1 Torr. The Helium gas could then be pumped out of the system
leaving only Xenon. When the reservoir returned to room temperature

the pure Xenon could be reused.

F. Data Analysis

The frequency shift of the stimulated scattering in the gas

mixture from the laser frequency can be determined from the Fabry
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Perot fringes. The method of that analysis is given in this section
following the discussion given in Born and Wolfa.
The condition for constructive interference which gives the
bright fringe is that the phase'shiftb of the light in making a round
trip of the FPP cavity is an integral multiple of 27 . This condition

is expressed by

\
m = _25_17 = c.n'h)f:ose' +% (3.19)

where n' is the index of refraction of the medium between the plates,
h is the plate separation, 6'is the anéle of reflection, and & is the
phase change on internal reflection; m is the integer order of the
interference. For 0=0, the expression on the right is not in general

an integer. So one may write

m'+e = 200 . @ (3. 20)

A 4
where m'is the integer order of the innermost ring and e < 1.

The integer order of the pth ring out from the center of the interference

pattern is m'=- (p - 1) and the diameter of this ring is given by

p? - irﬂ'ziz(p-ue) . (3.21)
P nh

Suppose now that the light field incident upon the FPP consists of two

essentially monochromatic components with wavelengths )‘1 2 which
H

are not too far apart. Then equation (3.20) may be written for each

: 1
component. In terms of spectroscopic wave number K = Y
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m = 2n'K + i . 3,22

2te 2 = 1

-

Subtraction gives the result

1
M=K]-K2=m(m'l-m’2+el-e2). (3.23)

The value of m'1 - m'2 , which is the number of orders overlap between
the two patterns, can be determined by changing the plate separation.
In this experiment, the frequency shift is less than the free spectral
range of the FPP so m'l- m'Z = 0. The difference in the fractional

orders e ~e, is obtained from measurements of the ring diameters.

If kl ~ XZ , the ring diameters for each component are given by

Z - -
Dl,Zp = A(p 1+e1,2)
where (3.24)
s - 4o
= —-T—
nh

Subtracting the square of the diameter of successive rings for each

component gives

2 2
- = . !2
D 2prn~Prap = 4 (3.25)

Subtracting the square of the diameter of the rings due to each

component for the same order of interference gives

2 2
- = - .
Dlp DZ = A (e1 ez) (3.26)

Note that the right hand side of both equations (3. 25) and (3.26) does

not depend upon p so both of these subtractions can be carried out for
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many orders of interference. This will give good average values for
2 2
A and Dlp sz.

in fractional orders is given by

Denoting the average value by a =, the difference

2
e, ~e, = ‘D -DZ (3.27)

The frequency shift is then given by equation (3, 23).

The FPP ring diameters were measured from the Polaroid
photographs taken in this experiment to the nearest 0. 0001 inch using
a traveling microscope. Usually 4 or 5 rings were clearly visible so

the averaging described above was done over this number of fringes.
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CHAPTER 1V

NUMERICAL CALCULATIONS. EXPERIMENTAL
RESULTS AND DISCUSSION

A. Introduction

In this chapter, the gas transport coefficients are discussed.
The primnary interest in studying the transport coéfﬁcients is to provide
a means by which accurate calculations of them may be made for the
gas mixtures under investigation. It is necessary to understand these
calculations in order to know their limitations in describing the
physical system. The various transport phenomena and the relations
between the coefficients can be obtained from the simple kinetic
theory. However to obtain accurate values one must resort to the
rigorous Kkinetic theory of gases in which the solution of the Boltzmann
equation is given by the Chapman=-Enskog perturbation procedure.

Since the gas mixtures under investigation are at moderate
pressures (~ 5-100 atm), corrections to the ideal gas equation of
state must be included in the calculations.

The experimental results are presented and compared with the

predictions of the theory which was developed in Chapter Il

B. Calculation of Gas Transport Coefficients

1. Simple Kinetic Theory

The phenomena of diffusion, viscosity and thermal conductivity
are all physically similar in that they involve the transport of some
physical property through the fluid. Diffusion is the transfer of mass

due to a concentration gradient, viscosity is the transfer of momentum
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due to a velocity gradient, and thermal conductivity is the transport
of thermal energy resulting from a temperature gradient. The

basic relations between these coefficients and their dependence on
temperature, pressure, mass and size of the gas molecules can be
easily determined from a simplified kinetic theory. In this simple
kinetic theory, all the gas molecules are assumed to be rigid, non-
attracting spheres, all traveling at the same speed V with an equal
numbe: traveling parallel to each coordinate axis. In this simple
approach, the transport coefficients can be expressed in terms of the
mean free path [ =% where R is the collision rate. Following this
approach, we find the results for the diffusion coefficient, viscosity

and thermal conductivity respectively,

Pey Peo
1 NT m
n = -3-NmVI = pD = B —-;2— (4.1)
c.n
A= ine vie X - ¢ VI m'
3 v m 2
o
P
where p = Nm =-k£ is the density and ¢ is the molecular diameter.
T

The constants A, B, C depend upon units and are of no interest here.
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2. Rigorous Kinetic Theory

a. Chapman=-Enskog Solution of Boltzmann Equation

The rigorous development of the kinetic theory of gases is
based on knowledge of the molecular distribution function f(?, ;7, t)
which represents the number of molecules at time t in a volume of
phase space at (?, V) When the system is in equilibrium, f reduces
to the Maxwellian distribution. When the system is not at equilibrium,
the distribution function satisfies the Bolizmann equation. Under the
conditions that the deviation from equilibrium is small, { is nearly
Maxwellian and the Boltzmann equation can be solved by a perturbation
method developed by Chapman and Enskog. The resulting solutions
are then used to obtain expressions for the transpert coefficients.
With this approach, all of the transport coefficients are expressed in

, which explicitly involve the

terms of a set of integrals Qg’ 8)

dynamics of the molecular encounter and thus the intermoiecular
force law. For collisions between molecules of type i and j, these

integrals are defined by1

—_— 2
’ 2mka T o~ & -yi. 2843
abs) B S‘ Se Yy, (1-cos? 8)bdbdy..
ij oF ; ij ij

0

In these integrals, “ij is the reduced masys of the colliding molecules
i and j, 6 is the angle by which the molecules are deflected in the
center of gravity coordinate system, b is the impact parameter, and
Yij is the reduced initial relative speed of the colliding molecules

given by
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where gij is the initial relative velocity of the two moleccules. The
most satisfactory calculations of Qﬁ’ 8) are those made on the basis
of the Lennard-Jones (6-12) potential which describes reasonably well
the interaction between spherical, non-polar molecules.

The Chapman-Enskog theory considers only binary collisions
so the results are not applicable at densities sufficiently high that
three body collisions become important. The theory also assumes
that the molecular mean free path is small compared to the dimensions
of the container, so that surface effects are not important. The
Chapman-Enskog theory is therefore most useful for describing the
properties of a dense gas.

Strictly speaking, the Chapman-Enskog theory applies only to
monatomic gases. Since inelastic collisions occur between molecules
with internal degrees of freedom, the kinetic energy is not conserved
upon coilision, although clearly mass and momentum are conserved.
Conse'quently, the viscosity and diffusion are not appreciably
affected by the presence of internal degrees of freedom, and the
theory of monatomic gases may be applied to polyatomic molecules
with success, provided the molecules are approximately spherical.
However, the thermal conductivity is significantly affected by
internal degrees of freedom. For a monatomic gas, the thermal

conductivity is related to the viscosity by
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15

N o=

Zln
P 1

where M is the molecular weight of the gas and R is the gas constant.
This relation has been confirmed experimentally.

The specific heat and bulk viscosity of the gas are also affected
by the transfer of energy to internal degrees of freedom of the
molecules. The magnitude of contribution of the internal degrees of
freedom depends of course on the frequency at which the measurement
is made. This point is discussed in greater detail in connection with
the calculation of the specific heat. The contribution of the internal
degrees of freedom to the thermal conductivity can then be givep by
a correction term which depends upon the specific heat.

~
C

n iz &+ 3 4.2)

=[G
=
ol

This formula was f{irst proposed by Eucken and gives good agreement
with experimental results. For a monatomic gas ?v = %R and the
Eucken formula reduces to the thermal conductivity for monatomic

gas.

b. Transport Coefficients in Chapman-Cowling Integral Form

In this section, the transport coefficients are presented in terms
of the Chapman=Cowling integrals Qi(:’ ), These results may be
derived following the work of Chapman and Cowlingz, and also
Hirschfelder, Curtiss and Birdl. This calculation is quite involved

and will not be discussed here. We present only the results which are
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necessary for the calculation of numerical values for the transport
coefficients of the gas mixtures under consideration. All of the
results presented here are those which arise from the first order
approximation of the Chapman-Enskog solution of the Boltzmann
Equation. The values of the Chapman Cowling integrals (CCI) which
are used are those calculated for the Lennard-Jones (6-12) potential.
The parameters which describe this potential are indicated in

Fig. 4.1. The values of the potential parameter ¢ and collision
diameter ¢ are given in Table 4-1. For a gas mixture, the collision

diameter is given by

-1
o -2(0'1+0'z)

12

and the potential parameter is

€2 ~ \} €1€2

The CCI are calculated as functions of the reduced temperature
Tk

N

T =

, Where kB is the Boltzmann constant. The transport
%
coefficients are given in terms reduced integrals § = grigid abherel
: & . 2. 2)k s 2. 2)% Fs
The values of T' and the GCI of interest an') (1)), sz;,_)’ (Ty),
2. 2)k S 1 1:5: £ . . .
a2 (Tl ! (T;,) | are also given in Table 3-1. Certain

ratios of the CCI appear frequently. They are

A* - gB 2 gl
B = [50b )" - 4qfl 3y gl D

C* = Q(lr Z)*/n(l, 1)*
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V(r)

—

LENNARD - JONES (6-12) POTENTIAL

Fig. 4.1 Lennard-Jones (6-12) Potential Versus Distance Between
Molecules
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These values are also given in Table 4-1. For calculations pertaining
to the mixtures, it is convenient to introduce a parameter M12 given

by 2M, M

172
M =
12 M1+M2

where Ml’ M2 are the molecular weights of the component species.

(1) Viscosity

To a first approximation, the viscosity of a pure gas is given by

-5 MiT gm
n = 2. §693 x 10 ?—S-z—(mk T (4. 3)
i1

This result may be used to obtain the viscosities of both pvre gases
my N To obtain viscosity of the mixture, it is convenient to
introduce a viscosity M2 which is given by Equation (4. 3) with i

replaced by 12, Lie viscosity of a binary mixture 1s then given by

. 1+Y /X
Tz = X5 | ¥z ] G
where
2 2
- 1 1 = 1 1
x=(1c)+2c(1c)+c
n m N2 n2
2 M M +M)2 P
2 o Bas | feelt 1)+2(1-cgc'(( 1t M) M2
n 5712 n MZ 7712; 4M1M2 mn2
c'2 M2
+ == )
n, M
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2
3 M (M, +M,)
3 % 2 172 M2 M2
z S -A (l-c') (——)+2c'(1-c') —————————— (——- + —-)-1
n 5712 Ni2 4M1M2 m np
M
2 2
+ ¢! (m-l-)

(2) Thermal Conductivity

For a pure gas the thermal conductivity is given by

: ’\/T7M.'
N, = 8292.5 L Sk (4. 5)
i cz 32, 2)* cm sec °k '
i i

For the polyatomic SF6 molecules, ’;v = 3R so this result must be
multiplied by % (Eucken correction), The parameter )\12 is again

given by the expression for )‘i with i = 12, The thermal conductivity

for a gas mixture is givea by

1+Y, /X
1 _ NN
RN vy “.6)
mix 1N
where
' X, = jl;c'[z 5 Zc’)\ll-c') + g_'i

1 12 N2

2 2
Y. = (1-¢c') U(l) ; 2c'(1-¢') U(Y) o c' U(Z)
M M2 N

N
'

\ = (l-c')2 AL 2c'(l=c') U(z) et U(Z)
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2
U(l) = iA* -1 (!'EB*l +1)£/1.1_ + l (MI-MZ)
15 “*12 ~ Z V5 P12 M 2 MM
2 1v2
M M,-M )2
U(Z) =iA* -.1_(.153‘.;.1)_5.;.15_2__1__
15 12 12 V5 12 M, 2 MM,
2 2
oY) 4 (‘_M_l*_Mz_’_) M2o1azg
I5 "2 \TaMM, NNy 12 V5 12
(M, - M 2
L5 _gzgr g 24N
3240, 0 12 M, M,

12

2
(M +Mp)" Ny A

(Z) _ 4 % 120 | 1 g2 o
U = 154, I M, ("1 t5) T TS Bt )

(3) Coefficient of Diffusion

The coefficient of diffusion for a binary mixture is given by

2.628 x 1072 N T3 /M 2

12 om
D = (4.7)
2 ~(1,1)% o« sec
Py, 077 (T),)

where P is the pressure in atmospheres.

(4) Thermal Diffusion Ratio
The thermal diffusion ratio for a binary gas mixture is given
in first approximation to be

(1) (2) .

c'(l-c') 8 {l=-c')~8'"c' *

k. = (bc.., = 5) (4.8)
T )‘12 X, +Y, 12
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where
o M21+M2 Mz 15 (MZ-MI) 1
S 4], M,
J(2) _ M§+M1 M2 oo 15 _ M2
MM oaa) ¢M,

Choice of the correct sign for kT requires some attention.
When a mixture of gases with large, heavy molecules and small light
molecules is placed in a thermal gradient, the lighter molecules
diffuse toward the warmer regionsz. The concentration gradient,
which is established by thermal diffusion, is opposed by ordinary
mass diffusion which tends to equalize the composition, and, in time,
a steady state is reached in which the opposing influences of thermal
and ordinary diffusion balance. Then, ignoring pressure gradients,

the concentration diffusion equation (2. 29) becomes

k
ac _ 2 T 2 _
3 = P[Vict F VTl =0

where ¢ is the mass concentration of the light gas (Helium).
Integration over an arbitrary volume of the mixture and use of Green's
Theorem to convert to a surface integral gives
k
T -
{(Vc+ = gT) - ds = 0

which implies
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Thus the thermal diffusion ratio k.. must be negative so that the

T
concentration of the light molecules increases as the temperature
increases.

The values of the various transport coefficients for the pure

gases are given in Table 4-1, for the He-SF6 mixtures in Table 4-3

and for the He-Xe mixtures in Table 4-3.

3. Polarizibility and Specific Heat of thc Gas Mixture

The value of the molecular polarizibility for Helium was obtained
from Dalgano and .Kingston3 and the values for Xenon and SF6 were
obtained from Landolt-'Borstein4. The values of the polarizibility
are given in Table 4-1, The average molecular polarizibility of the

mixture is given by
a = (l+c') a) + c'uz

It is a well known result from kinetic theoiry that the heat
Nk
capacity at constant volume <, for a monatomic ideal gas is % —p—B- R
Nk
B from each of the three

which is due to the contribution of -]é-
translational degrees of freedom. For a polyatomic molecule the
specific heat depends on the frequency at which the measurement is
made. For frequencies less than -;1; , Where TR is the rotational
relaxation time (the time which is required for a molecule to change

its rotational energy) the three rotational degrees of free will each

contribute 5 B to the specific heat. Similarly, for frequencies

less than A , where L is the vibrational relaxation time, the
v



-135-

vibrational modes (fifteen for SF6) can each take up energy and thus
contribute to the specific heat.
The time between collisions T, can be calculated from kinetic

energy considerations with a knowledge of the gas viscosity n.s

_ nx10°° sec
Te = 12.66 Platm)
For SF6 at 5 atm, T = 101 sec. A value for the rotational relaxation
time R = 2.5 Te estimated from the theory of Sather and Dahler6 has
given good agreement with measurements of scund attenuation in SF6
by Holmes and Stott7. Thus for frequencies less than 5000 MHz the
rotational degrees of freedom contribute to the specific heat.
O'Connor8 and Holmes and Stott7 have shown however that the
vibrational relaxation time T, ™~ 103 Te and the experimental results
show that for frequencies above 30 MHz the vibrational degrees of
freedom do not contribute to the specific heat.
The frequencies of the material excitation in this experiment
are ~ 100-500 MHz as will be shown later. In this region the specific
heat at constant volume for the SJI.“6 is 3-1:1-::—B from the 3 translational

and 3 rotational degrees of freedom. The specific heats for the

He -SF6 mixture are

= (3Ngp + 2N, ) p
€v mix © SFg ' 2 He' P
c = ¢ + F-l-(—B—
Pmix vmix p

For the monatomic Xenon gas of course these considerations do not
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Nk
apply and c, = -% —p—B- .

The bulk viscosity ¢ of the polyatomic molecule is also related
to the transfer of energy to internal degrees of freedom. The bulk

viscosity is related to relaxation times by1

2
Nk_ T
_ B (2)
¢ = 2 IZ cv Y
c
v

(2)

v is the contribution of the particular degree of freedom to

where c
the specific heat per molecule c, For SF‘6 at 5 atm pressure § = .34n.
For Xenon, the bulk viscosity is zero since there are no internal degrees
of freedom.

One might reasonably be concerned that the addition of Helium to
the SF‘6 would substantially decrease the relaxation times and allow
vibrational contributions to enter the specific heats, thermal conductivity
and bulk viscosity. However the recent investigation of spontaneous

scattering from the He-SF6 mixtures made by Gornall9 et.al. indicate

that the vibrational degrees of freedom are not in fact excited.

4. Derivatives of Thermodynamic Parameters

The expressions which were used to calculate the derivatives of
the thermodynamic parameters which appear in the various gain
expressions are presented in this section. These results were
calculated using the ideal gas law P = NkBT. Extensions of these
forms to include corrections due to the non-ideality of the gas are
given in Section (C2). We need to know the variation of mass density

with temperature and pressure, the variation of the chemical potential
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with concentration and the variation of the dielectric constants with

T, P, and c. These results are given as follows

-QQ - —&— S 1 = —@2 - ‘J—
(BP)T, c - Nkp T 2 Y (8P)s,c 2
\

T ]
GT'P, ¢ erh T
? (my - m)
(22) = 8—12-—4
oc’'P, T Nm, m,
k Tp
B
&), - -
oc’'P, T c(l-c)lem2
where vps Vg are the isothermal and adiabatic sound velocities
respectively and cp
Y = ¢
v
(Qi) _ 47 (Nlcz1 + N2°2)
oP'T,c NkBT
2
(34) _ 4 p (az al)
oc’'P, T Nm, m,

- 47 (Nlo.

(_8_;) _ +Nza2)
oT'P, c T

1
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C. The Equation of State

1. Virial Expansion

The well known equation of state for the ideal gas

P = NkgT

needs some correction even at atmospheric pressure. The virial
equation of state describes these corrections as a power series

expansion in the number density

ﬁi%‘f = 1+B(T) (X + e(T) (Nﬁ)?w... 4.9)
a a

where Na is Avagadro's number and B(T), c(T) are the second and
third virial coefficients.

From the statistical mechanical expressions for the virial
coefficients, it becomes evident that the second and third coefficients
represent deviations from ideal behavior when collisions between two
and three molecules become important. As the pressure increases,
more virial coefficients must be included. As an indication of the
contribution of the second and third virial coefficients for the gases

of interest, the following results are found at 0°c

SF, at 10 atm, Wi‘- = 1-0.12+.005

Xe at 10 atm E = 1=-0.06+.0008
* NkgT ' )

He at 100 atm P -1+ .05+.002
» Nk T : :
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The third virial coefficients are not significant in this work and this
is consistent with the calculations of the transport coefficients which
considered only binary collisions. It is perhaps interesting to note
that the sign of the second virial coefficient correction is different
for the heavy gases and for Helium. This result is due to the fact
that the interaction between the heavy molecules is dominated by the
strong attractive part of the potential. The attractive potential for
the Helium atoms is weak and thus the atomic interactions are
dominated by the excluded volume effect due to the short range repul-
sive part of the potential. In mixtures with a 10:1 ratio of Helium to
heavy gas number density, at pressures low enough that the third
virial coefficients do not contribute significantly, the ideal gas law
is not a bad approximation.

For the gas mixture, the second virial coefficient is given by1

B(T) = (1-c"? B,(T) + c?B,(T) + 2c'(1-c") B, (T)

(4.10)

mixture

where Bl’ B, are the virial coefficients calculated from the potential
functions for molecules of type 1 and 2 and BIZ is calculated from the
potential function which characterizes the interaction between the two

molecules.

The virial coefficients are calculated from the intermolecular
potential §(r) where r is the molecular separation. The second

virial coefficient is given by

B(T) = - 21 N, S[e"*“’)/k'r - 1) e2ar
0
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Numerical "alues for the reduced second virial coefficients B given

by
&
B = &
0
3 _ :::k dk‘B"<
Bk = T (-—,——k)
dT
2 3 ‘s .
b0 =37 Na o0~ (second virial coefficient for hard sphere

molecules)

for the Lennard-Jones (6-12) potential.

) = 4e[ (D)2 - 9

have been given by Hirschfelder Curtiss and Birdl. The relevant

values for the gain calculations are given in Table 4-2.

2. Non-Ideal Gas Corrections

The non-ideal gas corrections are included in the calculations
by observing that there are a set of gas parameters which are more
or less fundamental. These parameters are fundamental in the sense
that all of the other gas parameters, thermodynamic derivatives and
transport coefficients depend upon the values of these fundamental
parameters. Thus if these fundamental parameters are corrected
for the non-ideal behavior of the gas mixtures, the corrections to
all the remaining parameters and transport coefficients will be made
automatically.

These fundamental parameters are the pressure (or number

denegity), isothermal coefficient of expansion Qs specific heats at
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constant volume and a constant pressure and the isothermal sound
velocity. The non-ideal gas corrections for these parameters can
be derived from the virial expansion Equation (4. 9) using the
thermodynamic expressions for the various parameters. The
derivation is straightforward and will be omitted and the results for

the gas mixture given as follows

B1 P1 .._B1
B v
Bmix P mix
P =NkBT[1+——~—],' N=fk;:[l-—~—]
v v
Q = l (QXA; = -1- [1+ _.——._._Blmix/v ]
T ~ aT'P T 1+B_. /3
mix
_ © ZBmix 2 mix, Nk
c. = c_ - + )
v v ~ ~ p
v v
e = c° Z2mix Nk
P P ~ p
v
VZ = NkBT [1 + ZBmlx]
T p : v
~ Na : . o
where v = N’ P1 is the partial pressure of the heavy gas and c,

clo:, are the ideal gas values of specific heat. Since the value of N
appears in '\\;, the expressions for the number density must be

evaluated in an iterative fashion.
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D. Numerical Calcnlations and Experimental Results

1. Introduction

The values of the gas transport coefficients and other relevant
parameters for the gas mixtures have been calculated by use of a
computer from the expressions presented in the preceding sections.
The calculations were made for the mixtures which were investigated
experimentally. For the I--Ie-SIF‘6 mixtures, the partial pressure of
SF6 was 5 atm and the Helium concentration was increased by adding
Helium. For the He-Xe mixture, the Xe partial pressure was 8 atm.
The values for the He-SF6 and He-Xe mixtures are presented in
Tables (4-3) and (4-4) respectively.

These values of the transport coefficients and gas parameters
were then used to calculate the values of 8ps B.r Bp given by
Equations (2. 62), (2.65) and (2. 69) respectively. The value of chT(w)
was calculated for frequency shifts from 0 to 1200 MHz in increments
of 5 MHz.

The values of the gas parameters and transport coefficients
which are calculated in this fashion are identical to the values used by
Gornall et.al. Since these values gave an excellent theoretical fit to
the experimental spontaneous light scattering spectra for the same
gas mixtures as investigated in this experiment, we may assume that
the values are quite accurate, particularly for the mixtures with
low He concentration. For the mixtures with Helium concentrations
above 50%, the accuracy of the calculated values may be somewhat

diminished due to the fact that the non-ideal gas corrections and the
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effects of He-heavy gas interactions are becoming more important.
Both of these effects are included in the calculations in an empirical

fashion as discussed in the preceding sections.

2. He -SF6 Mixture

Before beginning work on the He-SF6 mixtures, measurements

were made of the Brillouin threshold for pure SF6 as a function of
gas pressure. The reasons for doing this were to determine the
minimum pressure of SF6 in which stimulated Brillouin scattering
could be observed and, as a by-product, to test that the Brillouin
threshold was inversely proportional to the square of the gas density
as predicted by Equation (2. 62). It was important to know the
minimum SF6 pressure at which the available laser power could
produce stimulated scattering because, as we have seen, the
possibility of observing concentration scattering is greatest at low
pressure. The results of this measurement are shown in Fig. (4.2).
The minimum SF6 pressure in which stimulated Brillouin scattering
(SBS) was observed was 4 atm. In the range of pressure from 4 atm.
to 14 atm. the experimental value of the SBS threshold power agrees
very well with the theoretical prediction.

It was decided on the basis of these results and from gain
calculations, that a partial pressure of 5 atm of SF6 would be
appropriate for the investigation of stimulated scattering from
He-SF6 mixtures. The He concentration of the mixture was increased

by adding He. Thus, as the He concentration increased, the total



-147-

-0
(\2)
- 0
N
-
N
N
N
i [o)}
N
e
N
—o =
=
&
L= S e
n
[}
- T
- *
N
-0 —|a
-100
=10
-1<
-1~
L ] | i | ] o
o o
3 3 g = & 2 <
(MW 843MOd Wv38 QTO0HS3YHL
Fig. 4.2 Threshcld Intensity for Stimulated Brillouin Scattering in SI"'6

Gas as a Function of Pressure



-148-

pressure also increased. The gain coefficients in the decoupled mode
approximation fp» B By Were calculated as functions of He
concentration. The results of this calculation are shown in Fig. (4. 3).
The main features shown in this figure are the following: the Brillouin
gain decreases steadily with increasing He concentration up to about
857% He concentration (total pressure == 33 atm) and rises sharply for
higher concentrations (higher total pressure). The reason for this
behavior is that, as the He is added, the sound wave damping constant
I' given by Eqyuation (2. 78) increases so the Brillouin gain Equation

(2. 62) decreases. However gg also has a p2 dependence which at high
pressures eventually dominates the increase in I'and so the value of
g increases. The thermal Rayleigh gain g decreases steadily as c'
increases. The concentration gain g, increases and, for the pressures
which were chosen for the experiment, g. becomes larger than g at
a concentration of about 90%. Thus, considering the decoupled gain
coefficients as a first approximation to the problem, one expects to
see a transition from Brillouin scattering to concentration scattering
at about 90% concentration.

The gain constant chT(w) for the complete coupled mode solution
given by Equation (2,73) was calculated for frequency shifts from 0 to
1200 Mhz in intervals of 5 MHz. The result of this calculation is
presented in Fig. (4. 4) which shows gBCT(w) as a function of the
frequency shift w. The gain for pure SF6 (c' = 0) has its maximum

at the Brillouin shift
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wg = kvs ~ 400 MH:z

As the concentration c' increases, the gain at the Brillouin shift
decreases and the frequency shift at which the peak of BpT Occurs
increases as predicted by the theory. Also as the concentration
increases, the height of the local maximum in chT(u) at the frequency
shift characteristic of stimulated scattering from the concentration

mode

w, o Dk2 o~ 100 MHz

increases. At a concentration of about 60% , the gain at w_ becomes
larger than the gain at wg" Thus for concentrations greater than
60% the observed stimulated scattering is from the concentration
mode.

The frequency shifts for the various modes as functions of the
He concentration are presented graphically in Fig. (4. 5). The
frequency shift for the decoupled Brillouin mode is kvS as indicated
by Euation (2. 61). This result is due to the fact, discussed earlier,
that, for the gases under consideration, the low frequency, long
wavelength approximation to the sound wave dispersion relation is
valid. In this approximation, sound propagates at the adiabatic
velocity. The frequency shift which would be predicted if the sound
velocity were the isothermal velocity Ve is also shown in Fig. (4.5).
The frequency shift predicted from the coupled mode solution is shown
in Fig. (4.5). This shift indicates that as the He concentration is

increased, the sound velocity tends toward the isothermal value.
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The reason for this behavior is that the light He gas diffuses so fast
that it established isothermal conditions during the period of the sound
wave which is determined by the heavy component and comparatively
low. The frequent collisions of the He atoms transports sufficient
energy to establish thermal equilibrium during the period of the
fluctuations. The sound wave is heavily damped as discussed earlier,
because the heavy and light atoms relax toward thermal equilibrium
with different rates. There is therefore more dissipation of energy
during a cycle of the pressure oscillations. This has also been
observed by Gornall et. al. 9.
The frequency shift associated with the uncoupled thermal
diffusion mode (w = xkz) and v'ith the uncoupled concentration mode
(w = Dkz) are also shown in Fig. (4.5). The solution of the coupled
mode equations predicts an abrupt change at a concentration of 60%
in the value of the frequency shift at which the absolute maximum of
the gain BgcT Occurs. This change from large to small shift indicates
the transition from Brillouin to concentration scattering.
The experimental results for the He-SF6 1nix1:u.re10 are
presented in Fig. (4.6). The decrease in the gain as the He
concentration increased was experimentally observed as an increase
in the threshold for stimulated oscillation. For He concentration
below 60%, the observed frequency shift is in very good agreement
with the theoretical value. The theoretical value shown in this
figure is the frequency shift at which BRcT is maximum. For Helium

partial pressure above 8 atm the value of the observed frequency shift
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decreases rapidly toward the small values which are characteristic
of the concentration mode. The observed frequency shift makcs a
smooth transition from large to small values rather than the abrupt
change predicted by the theoretical calculations. The probable
explanation for this discrepancy is that the scattering irom the
concentration diffusion mode becomes transient as the pressure
increases. The steady state solution Equation (2. 53) are valid only
if the laser pulse duration tp is long compared to the product of the
steady state gain and the material relaxation time. The condition
then which must be satisfied for the steady state concentration

scattering is

~ 12
4SILL| z 40

t > a2
P Dk? Dk’

When this condition is not satisfied, the Stokes wave amplification is
given by a complete transient solution of the coupled Equations
(2.49-2. 52) and depends on the laser pulse duration as well as on the
distance z. The transient solution of the coupled equations is quite

difficult and has not been performed. In general, however, the

. 1 1
transient gain is less than the steady state value. Since D ~g, =

Dk
increases as the pressure and He concentration increases. The

laser pulse duration indicated by Fig. (3.2b) is tp = 5x 10-8 sec.,
assuming that the pulse envelope is smooth. Then, for pressure

about 10 atm, —l—z ~ 5x 10-10 sec which clearly allows the validity

Dk
of the steady state solution. However, for P ~ 50 atm, —l—z o
Dk

2.5x 10-9 sec. Thus we are approaching the region in which the
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steady state solution may not be accurate. If we consider the gain
versus frequency shift results shown in Fig. (4.4) we see that
qualitatively this explanation predicts the observed behavior. A
transient response in the concentration mode reduces the gain at

w= Dkz. Since the gain at ( =~ kvS continues to decrease as the He
concentration increases, the chT(“’) should pass through a transition
region where BRcT is maximum for () decreasing smoothly from the
value kvs to the value Dkz. This is exactly the behavior which is
observed experimentally.

When a partial pressure of 10 atm SF6 is used, the observed
frequency continues to increase as the He concentration increases in
agreement with theoretical predictions. The observed shift remains
characteristic of the Brillouin scattering for the mixture up to a

Helium concentration of 80% as shown in Fig. (4. 6).

3. He-Xe Mixture

In order to further verify the stimulated scattering from the
concentration mode, it was desirable to observe the effect ina
mixture of monatomic gases. This removed some of the uncertainties
in the calculations of the transport properties which occur with a
polyatomic molecule.

The Brillouin gain in Xe is about half the gain for SF6 at the
same pressure. Consequently a higher partial pressure of Xe was
required to observe stimulated Brillouin scattering. On the basis of

preliminary calculations, a Xe partial pressure of 8 atm was chosen.
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The main features of the He-Xe scattering were identical to
those of He-SF6 scattering. However, additional experimental
difficulties were encountered.

It was observed that the electrical breakdown threshold in Xe
wa 3 approximately equal to the Brillouin threshold. The breakdown

threshold was measured to be ~ 1011 WZ . The actual value of this

cm
number is of little significance unless the transverse mode structure,

and thus the focusing characteristics of the beam, are specified.
However, this observed threshold is in agreement with the results
of an earlier study of optically induced gas breakdown in the Noble
gases11

In order io make accurate measurements, it was necessary to
avoid gas breakdown since the breakdown may cause thermal Brillouin
or Rayleigh scattering to occur]'2 which would confuse the observations.
It was discovered that by focusing the laser into the gas mixture with
a lens of 40 cm focal length, the gas breakdown did not occur.

The values of the decoupled gain coefficients gps B BT are
shown in Fig. (4.7). The solutions for the coupled gain coefficient
8p.T 25 @ function of frequency are presented in Fig. (4.8) and the
frequency shifts for the various modes are shown in Fig. (4.9). Finally,
the experimental values for the frequency shift as a function of He con-
centration are shown in Fig. (4.10) along with the theoretical prediction.
As was the case for the He--SF6 mixture, the theory predicts an

abrupt change from large to small shift at 60% concentration. This

is the point at which the observed shift begins to decrease rapidly.
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The statements made about the transient response of the concentration
scattering for the I-Ie--SF6 mixture apply equally for the He-Xe

mixture.

E. Summary and Conclusions

In this work, it has been shown that the dynamical equations of
the binary mixture predict the existence of three normal modes of the
system. These modes are the sound wave and thermal and concentration
diffusion. In mixtures composed of roughly equal amounts of both
gases, these normal modes are strongly coupled and the effect of this
coupling is to increase the damping constants and decrease the sound
velocity of the mixture. These normal modes are each coupled to
applied electromagnetic fields through the dependence of the dielectric
constant on the thermodynamic parameters which characterize the
mixture. This coupling allows the electromagnetic fields to drive
coherent fluctuations in these thermodynamic parameters which in
turn react on the electromagnetic fields through the modulation of the
index of refraction and can lead to stimulated scattering. The
resultant gain for the scattered wave has been calculated and it shows
that in mixtures at relatively low pressure in which the different
molecules have a large difference in polarizibility and in mass, it is
possible to observe stimulated scattering from the concentration
fluctuations. The stimulated scattering has been observed in two
mixtures and the results are in good agreement with the theory.

Concentration scattering should be observable in certain other gas




-163-

mixtures, for example He-CF4, He CZF6 and possibly He-Ar, how-
ever it is doubtful that any additional information would be obtained.
In less select gas mixtures and all liquid mixtures the concentration
gain will be less than the Brillouin gain, and thus stimulated
concentration scattering cannot be observed.

In this experiment, a new technique was introduced which
resulted in substantial reduction of the threshold for stimulated
scattering. This technique should be applicable in the observation
of low gain scattering processes when only limited laser power is
available. We believe that this is the first unambiguous demonstration
of stimulated concentration scattering, in which the frequency of the
scattered light is systematically investigated as a function of
concentration.

Earlier investigations of stimulated light scattering from
binary mixtures have been made and provided the impetus for the
present investigation. The first experiment which claimed to have
observed stimulated concentration scatte ring13 was performed in a
liquid mixture of n-hexane (58% weight concentration) and nitrobenzene
(42%). However, the ratio of the gain constants in the decoupled mode
approximation is —g—C-B ~ 1..25x 10-5 which throws considerable
doubt on the interpretation of this experiment. Near the critical
point in a binary mixture where g% -+ 0, the concentration gain could
become large. However, the diffusion constant D approaches zero

at the same time. Thus the correlation time for concentration

fluctuations becomes large ~ 10-3 sec. The steady state analysis
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breaks down for solid state laser pulses, and even with gas laser
beams it would be difficult to maintain the required coherence for such
long times. A transient analysis must be made and the experimental
difficulties would be further enhanced by the large spontaneous
critical opalescence, although amplification of this spontaneous
emission at high intensities may well be detectable.

The second experiment14 was done with a Xe and He raixture
with He concentration c'= 0.9. At this concentration, the Brillouin

shift should be 0.0479 cm-1 rather than C, 055 cm-1 as reported. The

g g
gain ratio should be —< = 21 in contrast to the estimate of — = 0.1
gB gp
as estimated in Ref. 14. The observed concentration shift
- 2 -
0.033-0.042 cm ™" agrees with the value &v_ = g = 0.032 cm™.

At a higher total pressure, the stimulated Brillouin scattering should
dominate the concentration scattering as suggested in Ref. 14, however
this should not occur at a total pressure as low as 4 atm. Also at such
low pressure the condition for the validity of the hydrodynamic equations
y > 3 is not satisfied and the experimental technique is subject to
error, since positive effects were only observed in the presence of

gas breakdown. Sparks lead to low frequency scattering even in pure

noble gases, presumably caused by thermal Rayleigh scattering.
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